A NEW METHOD FOR TSCHEBYSCHEV APPROXIMATION OF COMPLEX-VALUED FUNCTIONS

被引:0
|
作者
GLASHOFF, K [1 ]
ROLEFF, K [1 ]
机构
[1] SIEMENS AG,D-8000 MUNICH 70,FED REP GER
关键词
D O I
10.2307/2007739
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:233 / 239
页数:7
相关论文
共 50 条
  • [21] COMPLEX-VALUED ROOTS OF REAL-VALUED CHARACTERISTIC FUNCTIONS
    STAUDTE, RG
    TATA, MN
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (01): : 123 - &
  • [22] Differential superordination for harmonic complex-valued functions
    Oros, Georgia Irina
    Oros, Gheorghe
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2019, 64 (04): : 487 - 496
  • [23] COMPLEX-VALUED MULTIPLICATIVE FUNCTIONS WITH MONOTONICITY PROPERTIES
    KOVACS, K
    ACTA MATHEMATICA HUNGARICA, 1992, 59 (3-4) : 401 - 403
  • [24] Nonuniform Sampling of Complex-Valued Harmonic Functions
    Gerhard Schmeisser
    Sampling Theory in Signal and Image Processing, 2003, 2 (3): : 217 - 233
  • [25] Complex-valued Function Approximation using a Fully Complex-valued RBF (FC-RBF) Learning Algorithm
    Savitha, R.
    Suresh, S.
    Sundararajan, N.
    IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, 2009, : 320 - +
  • [26] Valence of complex-valued planar harmonic functions
    Neumann, G
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (08) : 3133 - 3167
  • [27] Intermediate rings of complex-valued continuous functions
    Acharyya, Amrita
    Acharyya, Sudip Kumar
    Bag, Sagarmoy
    Sack, Joshua
    APPLIED GENERAL TOPOLOGY, 2021, 22 (01): : 47 - 65
  • [28] EXTENSION OF A THEOREM OF KAKUTANI TO COMPLEX-VALUED FUNCTIONS
    JAMESON, GJO
    MATHEMATISCHE ZEITSCHRIFT, 1967, 99 (03) : 213 - &
  • [29] ON THE APPROXIMATION OF COMPLEX-VALUED FREQUENCY-RESPONSE SPECIFICATIONS
    UNBEHAUEN, R
    FREQUENZ, 1990, 44 (3-4) : 92 - 95
  • [30] Optimal approximation using complex-valued neural networks
    Geuchen, Paul
    Voigtlaender, Felix
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,