Differential superordination for harmonic complex-valued functions

被引:4
|
作者
Oros, Georgia Irina [1 ]
Oros, Gheorghe [1 ]
机构
[1] Univ Oradea, Dept Math, Str Univ 1, Oradea 410087, Romania
来源
关键词
Differential subordination; harmonic functions; differential superordination; subordinant; best subordinant; analytic function;
D O I
10.24193/subbmath.2019.4.04
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega and Delta be any sets in C, and let phi(r, s, t, z) : C-3 x U -> C. Let p be a complex-valued harmonic function in the unit disc U of the form p(z) = p(1)(z) + <(p(2)(z))over bar>, where p(1) and p(2) are analytic in U. In [5] the authors have determined properties of the function p such that p satisfies the differential subordination phi(p(z), Dp(z), D(2)p(z), z) subset of Omega double right arrow p(U) subset of Delta. In this article, we consider the dual problem of determining properties of the function p, such that p satisfies the second-order differential superordination Omega subset of phi(p(z), Dp(z), D(2)p(z); z) double right arrow Delta subset of p(U).
引用
收藏
页码:487 / 496
页数:10
相关论文
共 50 条
  • [1] Best Subordinant for Differential Superordinations of Harmonic Complex-Valued Functions
    Oros, Georgia Irina
    MATHEMATICS, 2020, 8 (11) : 1 - 8
  • [2] Nonuniform Sampling of Complex-Valued Harmonic Functions
    Gerhard Schmeisser
    Sampling Theory in Signal and Image Processing, 2003, 2 (3): : 217 - 233
  • [3] Valence of complex-valued planar harmonic functions
    Neumann, G
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (08) : 3133 - 3167
  • [4] Approximation of Complex-Valued Functions by Fractal Functions
    Vijender, N.
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2021, 12 (02) : 1 - 14
  • [5] Hardy Type Spaces and Bergman Type Classes of Complex-Valued Harmonic Functions
    Chen, Shaolin
    Hamada, Hidetaka
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (04)
  • [6] Hardy Type Spaces and Bergman Type Classes of Complex-Valued Harmonic Functions
    Shaolin Chen
    Hidetaka Hamada
    Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46
  • [7] On graph norms for complex-valued functions
    Lee, Joonkyung
    Sidorenko, Alexander
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 106 (02): : 1501 - 1538
  • [8] New complex-valued activation functions
    Ozgui, Nihal
    Tas, Nihal
    Peters, James F.
    INTERNATIONAL JOURNAL OF OPTIMIZATION AND CONTROL-THEORIES & APPLICATIONS-IJOCTA, 2020, 10 (01): : 66 - 72
  • [9] COMPACT SETS OF COMPLEX-VALUED FUNCTIONS
    BENECKE, K
    MATHEMATISCHE NACHRICHTEN, 1977, 79 : 311 - 315
  • [10] General Complex-Valued Grouping Functions
    Chen, Ying
    Bi, Lvqing
    Hu, Bo
    Dai, Songsong
    JOURNAL OF MATHEMATICS, 2021, 2021