A New Identity for Complete Bell Polynomials Based on a Formula of Ramanujan

被引:0
|
作者
Bouroubi, Sadek [1 ]
tani, Nesrine Benyahia [2 ]
机构
[1] Univ Sci & Technol Houari Boumed, Fac Math, Lab LAID3, POB 32 16111 El Alia,Bab-Ezzour, Algiers, Algeria
[2] Fac Econ & Management Sci, Lab LAID3, Ahmed Waked St Dely Brahim, Algiers, Algeria
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p(n) be the number of partitions of n. In this paper we give a new identity for complete Bell polynomials based on a sequence related to the generating function of p(5n + 4) established by Srinivasa Ramanujan.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Bell-Based Bernoulli Polynomials with Applications
    Duran, Ugur
    Araci, Serkan
    Acikgoz, Mehmet
    AXIOMS, 2021, 10 (01) : 1 - 23
  • [42] Analysis of Bell Based Euler Polynomials and Their Application
    Khan N.
    Husain S.
    International Journal of Applied and Computational Mathematics, 2021, 7 (5)
  • [43] New fermionic formula for unrestricted Kostka polynomials
    Deka, Lipika
    Schilling, Anne
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (07) : 1435 - 1461
  • [44] A NEW QUADRATURE FORMULA ASSOCIATED WITH THE ULTRASPHERICAL POLYNOMIALS
    NEVAI, P
    VARMA, AK
    JOURNAL OF APPROXIMATION THEORY, 1987, 50 (02) : 133 - 140
  • [45] New type degenerate Stirling numbers and Bell polynomials
    Kim, Hye Kyung
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2022, 28 (04) : 666 - 676
  • [46] A New Matrix Inversion for Bell Polynomials and Its Applications
    Jin WANG
    JournalofMathematicalResearchwithApplications, 2019, 39 (04) : 331 - 342
  • [47] A New Identity Involving the Chebyshev Polynomials
    Zhang, Yixue
    Chen, Zhuoyu
    MATHEMATICS, 2018, 6 (11):
  • [48] Degenerate s-Extended Complete and Incomplete Lah-Bell Polynomials
    Kim H.K.
    Lee D.S.
    CMES - Computer Modeling in Engineering and Sciences, 2022, 130 (03):
  • [49] Degenerate s-Extended Complete and Incomplete Lah-Bell Polynomials
    Kim, Hye Kyung
    Lee, Dae Sik
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2022, 131 (03): : 1479 - 1495
  • [50] QUINTUPLE PRODUCT IDENTITY AS A SPECIAL CASE OF RAMANUJAN'S (1)psi(1) SUMMATION FORMULA
    Bhargava, S.
    Adiga, Chandrashekar
    Naika, M. S. Mahadeva
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2011, 4 (01) : 31 - 34