A New Identity for Complete Bell Polynomials Based on a Formula of Ramanujan

被引:0
|
作者
Bouroubi, Sadek [1 ]
tani, Nesrine Benyahia [2 ]
机构
[1] Univ Sci & Technol Houari Boumed, Fac Math, Lab LAID3, POB 32 16111 El Alia,Bab-Ezzour, Algiers, Algeria
[2] Fac Econ & Management Sci, Lab LAID3, Ahmed Waked St Dely Brahim, Algiers, Algeria
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p(n) be the number of partitions of n. In this paper we give a new identity for complete Bell polynomials based on a sequence related to the generating function of p(5n + 4) established by Srinivasa Ramanujan.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] A New Formula for the Bernoulli Polynomials
    Mezo, Istvan
    RESULTS IN MATHEMATICS, 2010, 58 (3-4) : 329 - 335
  • [22] New Properties on Degenerate Bell Polynomials
    Kim, Taekyun
    Kim, Dae San
    Lee, Hyunseok
    Park, Seongho
    Kwon, Jongkyum
    COMPLEXITY, 2021, 2021
  • [23] On new identities for Bell's polynomials
    Abbas, M
    Bouroubi, S
    DISCRETE MATHEMATICS, 2005, 293 (1-3) : 5 - 10
  • [24] New identities for the partial Bell polynomials
    Cvijovic, Djurdje
    APPLIED MATHEMATICS LETTERS, 2011, 24 (09) : 1544 - 1547
  • [25] A normalization formula for the Jack polynomials in superspace and an identity on partitions
    Lapointe, Luc
    Le Borgne, Yvan
    Nadeau, Philippe
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):
  • [26] A new approach to Bell and poly-Bell numbers and polynomials
    Kim, Taekyun
    Kim, Dae San
    Dolgy, Dmitry, V
    Kim, Hye Kyung
    Lee, Hyunseok
    AIMS MATHEMATICS, 2022, 7 (03): : 4004 - 4016
  • [27] Nonlinear Inverse Relations for Bell Polynomials via the Lagrange Inversion Formula
    Wang, Jin
    JOURNAL OF INTEGER SEQUENCES, 2019, 22 (03)
  • [28] Nonlinear Inverse Relations of the Bell Polynomials via the Lagrange Inversion Formula(Ⅱ)
    MA Xinrong
    WANG Jin
    JournalofSystemsScience&Complexity, 2023, 36 (01) : 96 - 116
  • [29] Some infinite integrals with powers of logarithms and the complete Bell polynomials
    Kolbig, KS
    Strampp, W
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 69 (01) : 39 - 47
  • [30] A new formula for the coefficients of Gaussian polynomials
    Andrica, Dorin
    Bagdasar, Ovidiu
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2019, 27 (03): : 25 - 36