Periodic orbits in coupled Henon maps: Lyapunov and multifractal analysis

被引:38
|
作者
Politi, Antonio [1 ,2 ]
Torcini, Alessandro [3 ]
机构
[1] Ist Nazl Ott, I-50125 Florence, Italy
[2] INFN Sez Firenze, Florence, Italy
[3] Univ Florence, Dipartimento Fis, I-50121 Florence, Italy
关键词
D O I
10.1063/1.165871
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A powerful algorithm is implemented in a 1-d lattice of Henon maps to extract orbits which are periodic both in space and time. The method automatically yields a suitable symbolic encoding of the dynamics. The arrangement of periodic orbits allows us to elucidate the spatially chaotic structure of the invariant measure. A new family of specific Lyapunov exponents is defined, which estimate the growth rate of spatially inhomogeneous perturbations. The specific exponents are shown to be related to the comoving Lyapunov exponents. Finally, the zeta-function formalism is implemented to analyze the scaling structure of the invariant measure both in space and time.
引用
收藏
页码:293 / 300
页数:8
相关论文
共 50 条
  • [31] UNSTABLE PERIODIC-ORBITS AND THE DIMENSIONS OF MULTIFRACTAL CHAOTIC ATTRACTORS
    GREBOGI, C
    OTT, E
    YORKE, JA
    PHYSICAL REVIEW A, 1988, 37 (05): : 1711 - 1724
  • [32] On r-periodic orbits of k-periodic maps
    Beyn, Wolf-Juergen
    Huels, Thorsten
    Samtenschnieder, Malte-Christopher
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2008, 14 (08) : 865 - 887
  • [33] Composants and the structure of periodic orbits for interval maps
    Ryden, DJ
    TOPOLOGY AND ITS APPLICATIONS, 2005, 149 (1-3) : 177 - 194
  • [34] Geometrically Integrable Maps in the Plane and Their Periodic Orbits
    Efremova, L. S.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (10) : 2315 - 2324
  • [35] PERIODIC-ORBITS IN QUANTUM STANDARD MAPS
    SCHARF, R
    SUNDARAM, B
    PHYSICAL REVIEW A, 1992, 46 (06): : 3164 - 3177
  • [36] PERIODIC-ORBITS FOR DISSIPATIVE TWIST MAPS
    CASDAGLI, M
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1987, 7 : 165 - 173
  • [37] Geometrically Integrable Maps in the Plane and Their Periodic Orbits
    L. S. Efremova
    Lobachevskii Journal of Mathematics, 2021, 42 : 2315 - 2324
  • [38] THE SIMPLE PERIODIC-ORBITS IN THE UNIMODAL MAPS
    ALSEDA, L
    SERRA, R
    LECTURE NOTES IN PHYSICS, 1983, 179 : 248 - 249
  • [39] PERIODIC-ORBITS OF MAPS OF-Y
    ALSEDA, L
    LLIBRE, J
    MISIUREWICZ, M
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 313 (02) : 475 - 538
  • [40] Periodic orbits and topological entropy of delayed maps
    Manffra, EF
    Kantz, H
    Just, W
    PHYSICAL REVIEW E, 2001, 63 (04): : 462031 - 462036