Periodic orbits in coupled Henon maps: Lyapunov and multifractal analysis

被引:38
|
作者
Politi, Antonio [1 ,2 ]
Torcini, Alessandro [3 ]
机构
[1] Ist Nazl Ott, I-50125 Florence, Italy
[2] INFN Sez Firenze, Florence, Italy
[3] Univ Florence, Dipartimento Fis, I-50121 Florence, Italy
关键词
D O I
10.1063/1.165871
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A powerful algorithm is implemented in a 1-d lattice of Henon maps to extract orbits which are periodic both in space and time. The method automatically yields a suitable symbolic encoding of the dynamics. The arrangement of periodic orbits allows us to elucidate the spatially chaotic structure of the invariant measure. A new family of specific Lyapunov exponents is defined, which estimate the growth rate of spatially inhomogeneous perturbations. The specific exponents are shown to be related to the comoving Lyapunov exponents. Finally, the zeta-function formalism is implemented to analyze the scaling structure of the invariant measure both in space and time.
引用
收藏
页码:293 / 300
页数:8
相关论文
共 50 条
  • [21] PERIODIC AND QUASI-PERIODIC ORBITS FOR TWIST MAPS
    KATOK, A
    LECTURE NOTES IN PHYSICS, 1983, 179 : 47 - 65
  • [22] Lyapunov exponents, dual Lyapunov exponents, and multifractal analysis
    Fan, AH
    Jiang, YP
    CHAOS, 1999, 9 (04) : 849 - 853
  • [23] Dynamical ordering of symmetric periodic orbits for the area preserving Henon map
    Yamaguchi, Y
    Tanikawa, K
    PROGRESS OF THEORETICAL PHYSICS, 2005, 113 (05): : 935 - 951
  • [24] Stability of some simple periodic orbits in a Henon-Heiles potential
    Antonov, VA
    Timoshkova, EI
    ASTRONOMICHESKII ZHURNAL, 1996, 73 (06): : 953 - 960
  • [25] AN ALGEBRAIC ANALYTICAL METHOD FOR EXPLORING PERIODIC-ORBITS OF THE HENON MAP
    HUANG, YN
    SCIENTIA SINICA SERIES A-MATHEMATICAL PHYSICAL ASTRONOMICAL & TECHNICAL SCIENCES, 1986, 29 (12): : 1302 - 1317
  • [26] Periodic orbits and non-integrability of Henon-Heiles systems
    Llibre, Jaume
    Jimenez-Lara, Lidia
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (20)
  • [27] UNSTABLE PERIODIC-ORBITS AND THE SYMBOLIC DYNAMICS OF THE COMPLEX HENON MAP
    BIHAM, O
    WENZEL, W
    PHYSICAL REVIEW A, 1990, 42 (08): : 4639 - 4646
  • [28] LYAPUNOV SPECTRA OF COUPLED CHAOTIC MAPS
    Li, Xiaowen
    Xue, Yu
    Shi, Pengliang
    Hu, Gang
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (12): : 3759 - 3770
  • [29] LYAPUNOV EXPONENTS OF HYPERBOLIC MEASURES AND HYPERBOLIC PERIODIC ORBITS
    Wang, Zhenqi
    Sun, Wenxiang
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (08) : 4267 - 4282
  • [30] Basic feature quantities for analysis of periodic orbits in digital return maps
    Tada, Naoki
    Saito, Toshimichi
    IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2018, 9 (01): : 2 - 10