Periodic orbits in coupled Henon maps: Lyapunov and multifractal analysis

被引:38
|
作者
Politi, Antonio [1 ,2 ]
Torcini, Alessandro [3 ]
机构
[1] Ist Nazl Ott, I-50125 Florence, Italy
[2] INFN Sez Firenze, Florence, Italy
[3] Univ Florence, Dipartimento Fis, I-50121 Florence, Italy
关键词
D O I
10.1063/1.165871
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A powerful algorithm is implemented in a 1-d lattice of Henon maps to extract orbits which are periodic both in space and time. The method automatically yields a suitable symbolic encoding of the dynamics. The arrangement of periodic orbits allows us to elucidate the spatially chaotic structure of the invariant measure. A new family of specific Lyapunov exponents is defined, which estimate the growth rate of spatially inhomogeneous perturbations. The specific exponents are shown to be related to the comoving Lyapunov exponents. Finally, the zeta-function formalism is implemented to analyze the scaling structure of the invariant measure both in space and time.
引用
收藏
页码:293 / 300
页数:8
相关论文
共 50 条
  • [1] A suspension of the Henon map by periodic orbits
    Starrett, John
    Nicholas, Craig
    CHAOS SOLITONS & FRACTALS, 2012, 45 (12) : 1486 - 1493
  • [2] Stabilization of Higher Periodic Orbits of the Lozi and Henon Maps using Meta-evolutionary Approaches
    Matousek, Radomil
    Lozi, Rene Pierre
    Hulka, Tomas
    2021 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC 2021), 2021, : 572 - 579
  • [3] Stabilization of Higher Periodic Orbits of the Chaotic Logistic and Henon Maps using Meta-evolutionary Approaches
    Matousek, Radomil
    Hulka, Tomas
    2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 1758 - 1765
  • [4] Calculating periodic orbits of the Henon-Heiles system
    Alhowaity, Sawsan
    Abouelmagd, Elbaz I. I.
    Diab, Zouhair
    Guirao, Juan L. G.
    FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2023, 9
  • [5] ROTATION NUMBERS OF PERIODIC-ORBITS IN THE HENON MAP
    ALLIGOOD, KT
    SAUER, T
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 120 (01) : 105 - 119
  • [6] Periodic orbits of Henon Heiles Hamiltonian - Bifurcation phenomenon
    Ozaki, J
    Kurosaki, S
    PROGRESS OF THEORETICAL PHYSICS, 1996, 95 (03): : 519 - 529
  • [7] The Lyapunov exponents and the neighbourhood of periodic orbits
    Carpintero, D. D.
    Muzzio, J. C.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 495 (02) : 1608 - 1612
  • [8] Periodic orbits of a generalized Henon-Heiles system
    alvarez-Ramirez, M.
    Garcia-Saldana, J. D.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (06)
  • [9] Stability regions for synchronized τ-periodic orbits of coupled maps with coupling delay τ
    Karabacak, Ozkan
    Alikoc, Baran
    Atay, Fatihcan M.
    CHAOS, 2016, 26 (09)
  • [10] Perturbation of the Lyapunov spectra of periodic orbits
    Bochi, J.
    Bonatti, C.
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2012, 105 : 1 - 48