CONNECTION BETWEEN SOLITONS AND GEOMETRIC PHASES

被引:4
|
作者
BALAKRISHNAN, R
机构
[1] Institute of Mathematical Sciences, Madras, 600 113, C.I.T. Campus
关键词
D O I
10.1016/0375-9601(93)90703-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The connection between moving space curves and soliton dynamics is exploited to show that soliton-supporting systems of a certain class are naturally endowed with a geometric phase density. The phase information is contained in the Lax pair structure associated with soliton evolution. The vanishing of the global (integrated) phase is shown to lead to an infinite number of conserved densities. Explicit expressions for the phase density are given for the modified Korteweg-de Vries, non-linear Schrodinger and sine-Gordon equations.
引用
收藏
页码:239 / 243
页数:5
相关论文
共 50 条
  • [31] Geometric solitons of Hamiltonian flows on manifolds
    Song, Chong
    Sun, Xiaowei
    Wang, Youde
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (12)
  • [32] Geometric and analytic results for Einstein solitons
    Agila, Enrique F. L.
    Gomes, Jose N. V.
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (08) : 2855 - 2872
  • [33] Zn solitons in intertwined topological phases
    Gonzalez-Cuadra, D.
    Dauphin, A.
    Grzybowski, P. R.
    Lewenstein, M.
    Bermudez, A.
    PHYSICAL REVIEW B, 2020, 102 (24)
  • [34] The geometric sense of the Sasaki connection
    Shchepetilov, AV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (13): : 3893 - 3898
  • [35] CANONICAL PHASES AND QUANTUM CONNECTION
    KURATSUJI, H
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 (19): : 4595 - 4617
  • [36] Connection between Variations of the Probability Distribution of the Recurrence Time and Phases of the Seismic Activity
    Varini, Elisa
    Rotondi, Renata
    ENTROPY, 2023, 25 (10)
  • [37] Stationary solutions of a model for the growth of tumors and a connection between the nonnecrotic and necrotic phases
    Bueno, H.
    Ercole, G.
    Zumpano, A.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2008, 68 (04) : 1004 - 1025
  • [38] Geometric phases in a scattering process
    Liu, H. D.
    Yi, X. X.
    PHYSICAL REVIEW A, 2011, 84 (02):
  • [39] Noncommutative geometry and geometric phases
    Basu, B.
    Dhar, S.
    Ghosh, S.
    EUROPHYSICS LETTERS, 2006, 76 (03): : 395 - 401
  • [40] GEOMETRIC PHASES AND ROBOTIC LOCOMOTION
    KELLY, SD
    MURRAY, RM
    JOURNAL OF ROBOTIC SYSTEMS, 1995, 12 (06): : 417 - 431