CONNECTION BETWEEN SOLITONS AND GEOMETRIC PHASES

被引:4
|
作者
BALAKRISHNAN, R
机构
[1] Institute of Mathematical Sciences, Madras, 600 113, C.I.T. Campus
关键词
D O I
10.1016/0375-9601(93)90703-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The connection between moving space curves and soliton dynamics is exploited to show that soliton-supporting systems of a certain class are naturally endowed with a geometric phase density. The phase information is contained in the Lax pair structure associated with soliton evolution. The vanishing of the global (integrated) phase is shown to lead to an infinite number of conserved densities. Explicit expressions for the phase density are given for the modified Korteweg-de Vries, non-linear Schrodinger and sine-Gordon equations.
引用
收藏
页码:239 / 243
页数:5
相关论文
共 50 条
  • [21] Evidence for the connection between star formation rate and the evolutionary phases of quasars
    Zhifu Chen
    Zhicheng He
    Luis C. Ho
    Qiusheng Gu
    Tinggui Wang
    Mingyang Zhuang
    Guilin Liu
    Zhiwen Wang
    Nature Astronomy, 2022, 6 : 339 - 343
  • [22] Connection between liquid and non-crystalline solid phases in water
    Martelli, Fausto
    Leoni, Fabio
    Sciortino, Francesco
    Russo, John
    JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (10):
  • [23] Evidence for the connection between star formation rate and the evolutionary phases of quasars
    Chen, Zhifu
    He, Zhicheng
    Ho, Luis C.
    Gu, Qiusheng
    Wang, Tinggui
    Zhuang, Mingyang
    Liu, Guilin
    Wang, Zhiwen
    NATURE ASTRONOMY, 2022, 6 (03) : 339 - +
  • [24] A CONNECTION BETWEEN THE PARAMETERS OF THE POSITIVE AND THE SUBSEQUENT NEGATIVE PHASES OF IONOSPHERIC STORM
    MOROZOVA, LP
    DANILOV, AD
    GEOMAGNETIZM I AERONOMIYA, 1986, 26 (01): : 47 - 51
  • [25] Holonomy of a principal composite bundle connection, non-Abelian geometric phases, and gauge theory of gravity
    Viennot, David
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (10)
  • [26] Geometric Derivation of the Delaunay Variables and Geometric Phases
    Dong Eui Chang
    Jerrold E. Marsden
    Celestial Mechanics and Dynamical Astronomy, 2003, 86 : 185 - 208
  • [27] Geometric derivation of the Delaunay variables and geometric phases
    Chang, DE
    Marsden, JE
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2003, 86 (02): : 185 - 208
  • [28] Interplay between geometric and dynamic phases in a single-spin system
    Wood, A. A.
    Streltsov, K.
    Goldblatt, R. M.
    Plenio, M. B.
    Hollenberg, L. C. L.
    Scholten, R. E.
    Martin, A. M.
    PHYSICAL REVIEW B, 2020, 102 (12)
  • [29] Creating nonlocality using geometric phases between partially distinguishable photons
    Gebhart V.
    Physical Review A, 2023, 107 (06)
  • [30] GEOMETRIC FORMALISM OF THE THERMODYNAMICS OF ADSORPTION AT INTERFACES BETWEEN 2 FLUID PHASES
    MOTOMURA, K
    ARATONO, M
    LANGMUIR, 1987, 3 (02) : 304 - 306