TOPOLOGICAL PROPERTY OF Q-CONVEX SPACES

被引:0
|
作者
LEPOTIER, J
机构
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:319 / &
相关论文
共 50 条
  • [31] Certain Subclasses of β-Uniformly q-Starlike and β-Uniformly q-Convex Functions
    AbuJarad, Eman S. A.
    AbuJarad, Mohammed H. A.
    Abdeljawad, Thabet
    Jarad, Fahd
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [32] Cohomology vanishing and q-convex functions on Infinite dimensional domains
    Ohgai, S
    SEVENTH INTERNATIONAL COLLOQUIUM ON DIFFERENTIAL EQUATIONS, PROCEEDINGS, 1997, : 277 - 282
  • [33] Boundary values of Hankel and Toeplitz determinants for q-convex functions
    Hadi, Sarem H.
    Shaba, Timilehin Gideon
    Madhi, Zainab S.
    Darus, Maslina
    Lupas, Alina Alb
    Tchier, Fairouz
    METHODSX, 2024, 13
  • [34] L2-ESTIMATES ON WEAKLY q-CONVEX DOMAINS
    Ji, Qingchun
    Tan, Guo
    Yu, Guangsheng
    OSAKA JOURNAL OF MATHEMATICS, 2015, 52 (01) : 1 - 14
  • [35] ON CONVEX TOPOLOGICAL LINEAR SPACES
    MACKEY, GW
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1946, 52 (07) : 615 - 615
  • [36] ON CONVEX TOPOLOGICAL LINEAR SPACES
    MACKEY, GW
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1946, 60 (NOV) : 519 - 537
  • [37] On convex topological linear spaces
    Mackey, GW
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1943, 29 : 315 - 319
  • [38] ${\cal C}^k$ estimates for ${\overline \partial}$ on q-convex wedges
    Moulay-Youssef Barkatou
    Mathematische Zeitschrift, 2002, 239 : 335 - 352
  • [39] Coefficient Inequalities for q-Convex Functions with Respect to q-Analogue of the Exponential Function
    Khan, Majid
    Khan, Nazar
    Tawfiq, Ferdous M. O.
    Ro, Jong-Suk
    AXIOMS, 2023, 12 (12)
  • [40] On q-Convex Functions Defined by the q-Ruscheweyh Derivative Operator in Conic Regions
    Jabeen, Mehwish
    Nawaz Malik, Sarfraz
    Mahmood, Shahid
    Riaz, S. M. Jawwad
    Ali, Md. Shajib
    JOURNAL OF MATHEMATICS, 2022, 2022