TOPOLOGICAL PROPERTY OF Q-CONVEX SPACES

被引:0
|
作者
LEPOTIER, J
机构
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:319 / &
相关论文
共 50 条
  • [21] CERTAIN RESULTS ON q-STARLIKE AND q-CONVEX ERROR FUNCTIONS
    Ramachandran, C.
    Vanitha, L.
    Kanas, Stanislava
    MATHEMATICA SLOVACA, 2018, 68 (02) : 361 - 368
  • [22] Determination of Q-convex sets by X-rays
    Daurat, A
    THEORETICAL COMPUTER SCIENCE, 2005, 332 (1-3) : 19 - 45
  • [23] A generalization to the q-convex case of a theorem of Fornaess and Narasimhan
    Popa-Fischer, A
    MICHIGAN MATHEMATICAL JOURNAL, 2002, 50 (03) : 483 - 492
  • [24] PROPER MAPS FROM STRONGLY Q-CONVEX DOMAINS
    DIEDERICH, K
    FORNAESS, JE
    MATHEMATISCHE ANNALEN, 1983, 264 (03) : 335 - 359
  • [25] Existence and compactness for the -Neumann operator on q-convex domains
    Le, Mau Hai
    Quang Dieu Nguyen
    Xuan Hong Nguyen
    MANUSCRIPTA MATHEMATICA, 2014, 144 (3-4) : 517 - 534
  • [26] Coefficient estimates for the class of quasi q-convex functions
    Altintas, Osman
    Aydogan, Melike
    TURKISH JOURNAL OF MATHEMATICS, 2020, 44 (01) : 342 - 347
  • [27] The Drop Property of Closed Bounded Convex Set in Topological Vector Spaces
    Xu, Chengfeng
    Liu, Zhibing
    Wang, Kanming
    2010 INTERNATIONAL CONFERENCE ON INFORMATION, ELECTRONIC AND COMPUTER SCIENCE, VOLS 1-3, 2010, : 1609 - 1612
  • [28] THE GROUP OF INVERSIBLE ELEMENTS OF A CONVEX BORNOLOGICAL ALGEBRA - Q-CONVEX BORNOLOGICAL ALGEBRAS
    AKKAR, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1985, 300 (02): : 35 - 38
  • [29] Janowski Type q-Convex and q-Close-to-Convex Functions Associated with q-Conic Domain
    Naeem, Muhammad
    Hussain, Saqib
    Khan, Shahid
    Mahmood, Tahir
    Darus, Maslina
    Shareef, Zahid
    MATHEMATICS, 2020, 8 (03)
  • [30] Certain subclasses of meromorphic multivalent q-starlike and q-convex functions
    Khan, Shahid
    Hussain, Saqib
    Darus, Maslina
    MATHEMATICA SLOVACA, 2022, 72 (03) : 635 - 646