Convergence analysis and approximation solution for the coupled fractional convection-diffusion equations

被引:2
|
作者
Rostamy, Davood [1 ]
Mottaghi, Ehsan [1 ]
机构
[1] Imam Khomeini Int Univ, Dept Math, Qazvin, Iran
来源
关键词
Fractional partial differential equations; maximum principle; computational biomathematics; stability; convergence analysis; numerical analysis;
D O I
10.22436/jmcs.016.02.07
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By using maximum principle approach, the existence, uniqueness and stability of a coupled fractional partial differential equations is studied. A new fractional characteristic finite difference scheme is given for solving the coupled system. This method is based on shifted Grunwald approximation and Diethelm's algorithm. We obtain the optimal convergence rate for this scheme and drive the stability estimates. The results are justified by implementing an example of the fractional order time and space dependent in concept of the complex Levy motion. Also, the numerical results are examined for disinfection and sterilization of tetanus. (C) 2016 All rights reserved.
引用
下载
收藏
页码:193 / 204
页数:12
相关论文
共 50 条
  • [41] The solution of convection-diffusion equations for solute transport to plant roots
    Roose, T.
    Kirk, G. J. D.
    PLANT AND SOIL, 2009, 316 (1-2) : 257 - 264
  • [42] Theoretical Analysis (Convergence and Stability) of a Difference Approximation for Multiterm Time Fractional Convection Diffusion-Wave Equations with Delay
    Hendy, A. S.
    De Staelen, R. H.
    MATHEMATICS, 2020, 8 (10) : 1 - 20
  • [43] An error estimate for the finite difference approximation to degenerate convection-diffusion equations
    Karlsen, K. H.
    Koley, U.
    Risebro, N. H.
    NUMERISCHE MATHEMATIK, 2012, 121 (02) : 367 - 395
  • [44] A finite volume method for the approximation of convection-diffusion equations on general meshes
    Hermeline, F.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 91 (12) : 1331 - 1357
  • [45] On numerical methods and error estimates for degenerate fractional convection-diffusion equations
    Cifani, Simone
    Jakobsen, Espen R.
    NUMERISCHE MATHEMATIK, 2014, 127 (03) : 447 - 483
  • [46] Analysis of a strongly coupled system of two convection-diffusion equations with full layer interaction
    Roos, Hans-G.
    Reibiger, Christian
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2011, 91 (07): : 537 - 543
  • [47] A New Modified Analytical Approach for the Solution of Time-Fractional Convection-Diffusion Equations With Variable Coefficients
    Khan, Hassan
    Kumam, Poom
    Hajira, Qasim
    Khan, Qasim
    Tchier, Fairouz
    Sitthithakerngkiet, Kanokwan
    Dassios, Ioannis
    FRONTIERS IN PHYSICS, 2022, 10
  • [48] Numerical solution of a non-local fractional convection-diffusion equation
    Osorio, F. C.
    Amador, P. A.
    Bedoya, C. A.
    ENTRE CIENCIA E INGENIERIA, 2024, 18 (35): : 25 - 31
  • [49] A study of isogeometric analysis for scalar convection-diffusion equations
    John, Volker
    Schumacher, Liesel
    APPLIED MATHEMATICS LETTERS, 2014, 27 : 43 - 48
  • [50] The Finite Element Method Solution of Variable Diffusion Coefficient Convection-Diffusion Equations
    Aydin, Selcuk Han
    Ciftci, Canan
    FIRST INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2012), 2012, 1470 : 228 - 231