Convergence analysis and approximation solution for the coupled fractional convection-diffusion equations

被引:2
|
作者
Rostamy, Davood [1 ]
Mottaghi, Ehsan [1 ]
机构
[1] Imam Khomeini Int Univ, Dept Math, Qazvin, Iran
来源
关键词
Fractional partial differential equations; maximum principle; computational biomathematics; stability; convergence analysis; numerical analysis;
D O I
10.22436/jmcs.016.02.07
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By using maximum principle approach, the existence, uniqueness and stability of a coupled fractional partial differential equations is studied. A new fractional characteristic finite difference scheme is given for solving the coupled system. This method is based on shifted Grunwald approximation and Diethelm's algorithm. We obtain the optimal convergence rate for this scheme and drive the stability estimates. The results are justified by implementing an example of the fractional order time and space dependent in concept of the complex Levy motion. Also, the numerical results are examined for disinfection and sterilization of tetanus. (C) 2016 All rights reserved.
引用
下载
收藏
页码:193 / 204
页数:12
相关论文
共 50 条
  • [11] An approximation scheme for the time fractional convection-diffusion equation
    Zhang, Juan
    Zhang, Xindong
    Yang, Bohui
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 335 : 305 - 312
  • [12] On the convergence of basic iterative methods for convection-diffusion equations
    Bey, J
    Reusken, A
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 1999, 6 (05) : 329 - 352
  • [13] On the stable solution of transient convection-diffusion equations
    Bayramov, N. R.
    Kraus, J. K.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 280 : 275 - 293
  • [14] Some observations on multigrid convergence for convection-diffusion equations
    Ramage, Alison
    Elman, Howard C.
    COMPUTING AND VISUALIZATION IN SCIENCE, 2007, 10 (01) : 43 - 56
  • [15] Robust convergence of multilevel algorithms for convection-diffusion equations
    Pflaum, C
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (02) : 443 - 469
  • [16] Approximate analytical fractional view of convection-diffusion equations
    Khan, Hassan
    Mustafa, Saima
    Ali, Izaz
    Kumam, Poom
    Baleanu, Dumitru
    Arif, Muhammad
    OPEN PHYSICS, 2020, 18 (01): : 897 - 905
  • [17] DISCONTINUOUS GALERKIN METHOD FOR FRACTIONAL CONVECTION-DIFFUSION EQUATIONS
    Xu, Qinwu
    Hesthaven, Jan S.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (01) : 405 - 423
  • [18] A Coupled Method for Solving a Class of Time Fractional Convection-Diffusion Equations with Variable Coefficients
    Taghavi A.
    Babaei A.
    Mohammadpour A.
    Computational Mathematics and Modeling, 2017, 28 (1) : 109 - 117
  • [19] Analytical solution of the time fractional diffusion equation and fractional convection-diffusion equation
    Morales-Delgado, V. F.
    Gomez-Aguilar, J. F.
    Taneco-Hernandez, M. A.
    REVISTA MEXICANA DE FISICA, 2019, 65 (01) : 82 - 88
  • [20] Numerical solution for a class of fractional convection-diffusion equations using the flatlet oblique multiwavelets
    Irandoust-pakchin, Safar
    Dehghan, Mehdi
    Abdi-mazraeh, Somayeh
    Lakestani, Mehrdad
    JOURNAL OF VIBRATION AND CONTROL, 2014, 20 (06) : 913 - 924