POLARIZED 4-MANIFOLDS, EXTREMAL KAHLER METRICS, AND SEIBERG-WITTEN THEORY

被引:0
|
作者
LeBrun, Claude [1 ]
机构
[1] SUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using Seiberg-Witten theory, it is shown that any Kahler metric of constant negative scalar curvature on a compact 4-manifold M minimizes the L-2-norm of scalar curvature among Riemannian metrics compatible with a fixed decomposition H-2(M) = H+ circle plus H-. This implies, for example, that any such metric on a minimal ruled surface must be locally symmetric.
引用
收藏
页码:653 / 662
页数:10
相关论文
共 50 条
  • [31] Brief resume of Seiberg-Witten theory
    Flume, R
    O'Raifeartaigh, L
    Sachs, I
    GROUP 21 - PHYSICAL APPLICATIONS AND MATHEMATICAL ASPECTS OF GEOMETRY, GROUPS, AND ALGEBRA, VOLS 1 AND 2, 1997, : 576 - 585
  • [32] Seiberg-Witten theory as a Fermi gas
    Bonelli, Giulio
    Grassi, Alba
    Tanzini, Alessandro
    LETTERS IN MATHEMATICAL PHYSICS, 2017, 107 (01) : 1 - 30
  • [33] Seiberg-Witten theory with SpinH structure
    Kim, Inkang
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (07)
  • [34] Extremal Almost-Kähler Metrics and Seiberg–Witten Theory
    Chanyoung Sung
    Annals of Global Analysis and Geometry, 2002, 22 : 155 - 166
  • [35] The quantum group of Seiberg-Witten theory
    RuizAltaba, M
    FIRST LATIN AMERICAN SYMPOSIUM ON HIGH ENERGY PHYSICS AND VII MEXICAN SCHOOL OF PARTICLES AND FIELDS, 1997, (400): : 555 - 558
  • [36] Seiberg-Witten theory without tears
    O'Raifeartaigh, L
    ALGEBRAIC METHODS IN PHYSICS: SYMPOSIUM FOR THE 60TH BIRTHDAYS OF JIRI PATERA AND PAVEL WINTERNITZ, 2001, : 193 - 204
  • [37] Seiberg-Witten theory and integrable systems
    D'Hoker, E
    Phong, DH
    INTEGRABILITY: THE SEIBERG-WITTEN AND WHITHAM EQUATIONS, 2000, : 43 - 68
  • [38] Monopole condensates in Seiberg-Witten theory
    Saçlioglu, C
    PHYSICS LETTERS B, 1999, 454 (3-4) : 315 - 318
  • [39] The Seiberg-Witten spectrum in string theory
    Brandhuber, A
    Stieberger, S
    GAUGE THEORIES, APPLIED SUPERSYMMETRY AND QUANTUM GRAVITY II, 1997, : 218 - 230
  • [40] Edges, orbifolds, and Seiberg-Witten theory
    Lebrun, Claude
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2015, 67 (03) : 979 - 1021