The Grand Four: Affine Invariant Globalizations of Newton's Method

被引:4
|
作者
Deuflhard, Peter [1 ]
机构
[1] Zuse Inst Berlin, Berlin, Germany
关键词
Global Newton methods; Affine invariance; Natural level function; Pseudo-continuation method;
D O I
10.1007/s10013-018-0301-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper gives a concise synopsis and some new insights concerning four affine invariant globalizations of the local Newton method. The invariance classes include affine covariance, affine contravariance, affine conjugacy, and affine similarity. In view of algorithmic robustness, each of these classes of algorithms is particularly suitable for some corresponding problem class.
引用
下载
收藏
页码:761 / 777
页数:17
相关论文
共 50 条
  • [41] An affine invariant rank-based method for comparing dependent groups
    Wilcox, RR
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2005, 58 : 33 - 42
  • [42] New method for multi-scale affine geometric invariant extraction
    Huang, B. (huangbojlu@sina.com), 1600, Chinese Institute of Electronics (34):
  • [43] A new affine invariant feature extraction method for SAR image registration
    Yang, L. J.
    Tian, Z.
    Zhao, W.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2014, 35 (20) : 7219 - 7229
  • [44] A new affine-invariant image matching method based on SIFT
    Wang Peng-cheng
    Chen Qian
    Chen Hai-xin
    Cheng Hong-chang
    Gong Zhen-fei
    INTERNATIONAL SYMPOSIUM ON PHOTOELECTRONIC DETECTION AND IMAGING 2013: INFRARED IMAGING AND APPLICATIONS, 2013, 8907
  • [45] KEPLER'S EQUATION AND NEWTON'S METHOD
    Colwell, Peter
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1991, 52 (02): : 203 - 204
  • [46] On the convergence of open Newton's method
    Kunnarath, Ajil
    George, Santhosh
    Sadananda, Ramya
    Padikkal, Jidesh
    Argyros, Ioannis K.
    JOURNAL OF ANALYSIS, 2023, 31 (04): : 2473 - 2500
  • [47] Chaotic Convergence of Newton's Method
    Allen, Jont B.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2024, 72 : 1683 - 1690
  • [48] Accelerated convergence in Newton's method
    Ford, WF
    Pennline, JA
    SIAM REVIEW, 1996, 38 (04) : 658 - 659
  • [49] On the Newton's method for transcendental functions
    Kriete, H
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2001, 41 (03): : 611 - 625
  • [50] On the radius convergence of Newton's method
    Argyros, IK
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2001, 77 (03) : 389 - 400