The Grand Four: Affine Invariant Globalizations of Newton's Method

被引:4
|
作者
Deuflhard, Peter [1 ]
机构
[1] Zuse Inst Berlin, Berlin, Germany
关键词
Global Newton methods; Affine invariance; Natural level function; Pseudo-continuation method;
D O I
10.1007/s10013-018-0301-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper gives a concise synopsis and some new insights concerning four affine invariant globalizations of the local Newton method. The invariance classes include affine covariance, affine contravariance, affine conjugacy, and affine similarity. In view of algorithmic robustness, each of these classes of algorithms is particularly suitable for some corresponding problem class.
引用
下载
收藏
页码:761 / 777
页数:17
相关论文
共 50 条
  • [21] Newton's method
    Meza, Juan C.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2011, 3 (01) : 75 - 78
  • [22] Geometric meaning of Nielson's affine invariant norm
    Universitat Stuttgart, Stuttgart, Germany
    Comput Aided Geom Des, 1 (19-25):
  • [23] The geometric meaning of Nielson's affine invariant norm
    Degen, WLF
    Milbrandt, V
    COMPUTER AIDED GEOMETRIC DESIGN, 1997, 15 (01) : 19 - 25
  • [24] The Newton Bracketing method for the minimization of convex functions subject to affine constraints
    Ben-Israel, Adi
    Levin, Yuri
    DISCRETE APPLIED MATHEMATICS, 2008, 156 (11) : 1977 - 1987
  • [25] AMSS model and wavelet-based affine invariant method
    Li, M
    Feng, XC
    Zhang, H
    Wavelet Analysis and Active Media Technology Vols 1-3, 2005, : 1038 - 1044
  • [26] Affine Invariant Matching Method for Image Contains Repetitive Patterns
    Wang, Yunshu
    Liu, Jianye
    Zeng, Qinghua
    2016 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2016, : 121 - 126
  • [27] A Palm Vein Feature Extraction Method based on Affine Invariant
    Yuan, Wei-Qi
    Li, Wei
    2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO 2012), 2012,
  • [28] Extraction method of a segment length ratio affine geometry invariant
    Huang, Bo
    Zhao, Xiao-Hui
    Shi, Gong-Tao
    Zhao, Ji-Yin
    Chen, Tao
    Zhao, X.-H. (xhzhao@jlu.edu.cn), 1600, Editorial Board of Jilin University (43): : 497 - 503
  • [29] Convergence of the Newton-Kantorovich method for calculating invariant subspaces
    Nechepurenko, YM
    Sadkane, M
    MATHEMATICAL NOTES, 2004, 75 (1-2) : 101 - 106
  • [30] Convergence of the Newton--Kantorovich Method for Calculating Invariant Subspaces
    Yu. M. Nechepurenko
    M. Sadkane
    Mathematical Notes, 2004, 75 : 101 - 106