A SMOOTHING SPLINE BASED TEST OF MODEL ADEQUACY IN POLYNOMIAL REGRESSION

被引:44
|
作者
COX, D
KOH, E
机构
[1] UNIV ILLINOIS,DEPT STAT,CHAMPAIGN,IL 61820
[2] UNIV WISCONSIN,DEPT STAT,MADISON,WI 53706
关键词
D O I
10.1007/BF00049403
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:383 / 400
页数:18
相关论文
共 50 条
  • [1] A model-averaging approach for smoothing spline regression
    Xu, Liwen
    Zhou, Jiabin
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2019, 48 (08) : 2438 - 2451
  • [2] A CUBIC SMOOTHING SPLINE BASED LACK OF FIT TEST FOR NONLINEAR-REGRESSION MODELS
    DJOJOSUGITO, RA
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1995, 24 (09) : 2183 - 2197
  • [3] Isotonic smoothing spline regression
    Wang, Xiao
    Li, Feng
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2008, 17 (01) : 21 - 37
  • [4] A Comparison of Regression Spline Smoothing Procedures
    M. P. Wand
    Computational Statistics, 2000, 15 : 443 - 462
  • [5] A comparison of regression spline smoothing procedures
    Wand, MP
    COMPUTATIONAL STATISTICS, 2000, 15 (04) : 443 - 462
  • [6] Smoothing spline regression estimation based on real and artificial data
    Furer, Dmytro
    Kohler, Michael
    METRIKA, 2015, 78 (06) : 711 - 746
  • [7] Smoothing spline regression estimation based on real and artificial data
    Dmytro Furer
    Michael Kohler
    Metrika, 2015, 78 : 711 - 746
  • [8] Composite Quantile Estimation in Partial Functional Linear Regression Model Based on Polynomial Spline
    Ping YU
    Ting LI
    Zhong Yi ZHU
    Jian Hong SHI
    ActaMathematicaSinica,EnglishSeries, 2021, (10) : 1627 - 1644
  • [9] Composite Quantile Estimation in Partial Functional Linear Regression Model Based on Polynomial Spline
    Ping Yu
    Ting Li
    Zhong Yi Zhu
    Jian Hong Shi
    Acta Mathematica Sinica, English Series, 2021, 37 : 1627 - 1644
  • [10] Composite Quantile Estimation in Partial Functional Linear Regression Model Based on Polynomial Spline
    Yu, Ping
    Li, Ting
    Zhu, Zhong Yi
    Shi, Jian Hong
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2021, 37 (10) : 1627 - 1644