A model-averaging approach for smoothing spline regression

被引:0
|
作者
Xu, Liwen [1 ,2 ]
Zhou, Jiabin [1 ]
机构
[1] North China Univ Technol, Coll Sci, Beijing 100144, Peoples R China
[2] Renmin Univ China, Sch Stat, Beijing, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金; 北京市自然科学基金;
关键词
Bagging; Cross validation; Nonparametric regression; Smoothing parameter; Smoothing spline; PARAMETER SELECTION;
D O I
10.1080/03610918.2018.1457694
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article considers nonparametric regression problems and develops a model-averaging procedure for smoothing spline regression problems. Unlike most smoothing parameter selection studies determining an optimum smoothing parameter, our focus here is on the prediction accuracy for the true conditional mean of Y given a predictor X. Our method consists of two steps. The first step is to construct a class of smoothing spline regression models based on nonparametric bootstrap samples, each with an appropriate smoothing parameter. The second step is to average bootstrap smoothing spline estimates of different smoothness to form a final improved estimate. To minimize the prediction error, we estimate the model weights using a delete-one-out cross-validation procedure. A simulation study has been performed by using a program written in R. The simulation study provides a comparison of the most well known cross-validation (CV), generalized cross-validation (GCV), and the proposed method. This new method is straightforward to implement, and gives reliable performances in simulations.
引用
收藏
页码:2438 / 2451
页数:14
相关论文
共 50 条
  • [1] A Model-Averaging Approach for High-Dimensional Regression
    Ando, Tomohiro
    Li, Ker-Chau
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2014, 109 (505) : 254 - 265
  • [2] A Model-Averaging Approach to Replication: The Case of prep
    Iverson, Geoffrey J.
    Wagenmakers, Eric-Jan
    Lee, Michael D.
    [J]. PSYCHOLOGICAL METHODS, 2010, 15 (02) : 172 - 181
  • [3] FORECASTING REALIZED VOLATILITY: A BAYESIAN MODEL-AVERAGING APPROACH
    Liu, Chun
    Maheu, John M.
    [J]. JOURNAL OF APPLIED ECONOMETRICS, 2009, 24 (05) : 709 - 733
  • [4] Firm Default Prediction: A Bayesian Model-Averaging Approach
    Traczynski, Jeffrey
    [J]. JOURNAL OF FINANCIAL AND QUANTITATIVE ANALYSIS, 2017, 52 (03) : 1211 - 1245
  • [5] A Bayesian Model-Averaging Approach for Multiple-Response Optimization
    Ng, Szu Hui
    [J]. JOURNAL OF QUALITY TECHNOLOGY, 2010, 42 (01) : 52 - 68
  • [6] Prognostic Factors for Urachal Cancer: A Bayesian Model-Averaging Approach
    Kim, In Kyong
    Lee, Joo Yong
    Kwon, Jong Kyou
    Park, Jae Joon
    Cho, Kang Su
    Ham, Won Sik
    Hong, Sung Joon
    Yang, Seung Choul
    Choi, Young Deuk
    [J]. KOREAN JOURNAL OF UROLOGY, 2014, 55 (09) : 574 - 580
  • [7] A MODEL-AVERAGING METHOD FOR HIGH-DIMENSIONAL REGRESSION WITH MISSING RESPONSES AT RANDOM
    Xie, Jinhan
    Yan, Xiaodong
    Tang, Niansheng
    [J]. STATISTICA SINICA, 2021, 31 (02) : 1005 - 1026
  • [8] Persistent shocks and incomplete regional adjustment: a model-averaging approach
    Greenaway-McGrevy, Ryan
    Hood, Kyle K.
    [J]. REGIONAL STUDIES, 2022, 56 (03) : 371 - 380
  • [9] Estimation for volunteer web survey samples using a model-averaging approach
    Liu, Zhan
    Zheng, Junbo
    Tu, Chaofeng
    Pan, Yingli
    [J]. JOURNAL OF APPLIED STATISTICS, 2023, 50 (16) : 3251 - 3271
  • [10] The drivers of local income inequality: a spatial Bayesian model-averaging approach
    Hortas-Rico, Miriam
    Rios, Vicente
    [J]. REGIONAL STUDIES, 2019, 53 (08) : 1207 - 1220