A comparison of regression spline smoothing procedures

被引:64
|
作者
Wand, MP [1 ]
机构
[1] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
关键词
Bayesian variable selection; B-spline; Gibbs sampling; nonparametric regression; polynomial spline; roughness penalty; stepwise regression;
D O I
10.1007/s001800000047
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Regression spline smoothing involves modelling a regression function as a piecewise polynomial with a high number of pieces relative to the sample size. Because the number of possible models is so large, efficient strategies for choosing among them are required. In this paper we review approaches to this problem and compare them through a simulation study. For simplicity and conciseness we restrict attention to the univariate smoothing setting with Gaussian noise and the truncated polynomial regression spline basis.
引用
收藏
页码:443 / 462
页数:20
相关论文
共 50 条
  • [1] A Comparison of Regression Spline Smoothing Procedures
    M. P. Wand
    [J]. Computational Statistics, 2000, 15 : 443 - 462
  • [2] Comparison of Nonparametric Regression Curves by Spline Smoothing
    Li, Na
    Xu, Xingzhong
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2011, 40 (22) : 3972 - 3987
  • [3] A Comparison of the Nonparametric Regression Models using Smoothing Spline and Kernel Regression
    Aydin, Dursun
    [J]. PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 26, PARTS 1 AND 2, DECEMBER 2007, 2007, 26 : 730 - 734
  • [4] Isotonic smoothing spline regression
    Wang, Xiao
    Li, Feng
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2008, 17 (01) : 21 - 37
  • [5] Smoothing Parameter Selection for Nonparametric Regression Using Smoothing Spline
    Aydin, Dursun
    Memmedli, Memmedaga
    Omay, Rabia Ece
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2013, 6 (02): : 222 - 238
  • [6] Comparison of spline estimator at various levels of autocorrelation in smoothing spline non parametric regression for longitudinal data
    Fernandes, Adji Achmad Rinaldo
    Janssen, Paul
    Sa'adah, Umu
    Solimun
    Effendi, Achmad
    Nurjanna
    Amaliana, Luthfatul
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (21) : 5265 - 5285
  • [7] Smoothing Spline Semiparametric Nonlinear Regression Models
    Wang, Yuedong
    Ke, Chunlei
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2009, 18 (01) : 165 - 183
  • [8] On the optimal amount of smoothing in penalised spline regression
    Wand, MP
    [J]. BIOMETRIKA, 1999, 86 (04) : 936 - 940
  • [9] Smoothing spline nonlinear nonparametric regression models
    Ke, CL
    Wang, YD
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (468) : 1166 - 1175
  • [10] A model-averaging approach for smoothing spline regression
    Xu, Liwen
    Zhou, Jiabin
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2019, 48 (08) : 2438 - 2451