CONVECTIVE MOMENTUM TRANSPORT, SHOCK VISCOSITY, AND THE L-H TRANSITION IN TOKAMAKS

被引:7
|
作者
SHAING, KC [1 ]
HSU, CT [1 ]
机构
[1] MIT,CTR PLASMA FUS,CAMBRIDGE,MA 02139
来源
PHYSICS OF FLUIDS B-PLASMA PHYSICS | 1993年 / 5卷 / 08期
关键词
D O I
10.1063/1.860684
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Convective momentum transport associated with V.delV in the momentum equation is calculated for arbitrary values of the poloidal EXB Mach number M(p). Here, V is the plasma flow velocity. The physics origin of the convective momentum transport is associated with the coupling of the poloidal variation of the viscosity-driven flux to that of the flow velocity in the magnetic surface. When the radial gradient scale length of the plasma velocity is of the order of the ion poloidal gyroradius, rho(pi), the convective momentum transport becomes comparable to the ion viscosity. At M(p) congruent-to 1, the ion viscosity associated with shock-the shock viscosity-approximately balances the convective momentum transport to maintain the lowest-order ambipolarity. The implications of the effects of shock and convective momentum transport for the previous L-H transition bifurcation theory [K. C. Shaing and E. C. Crume, Jr., Phys. Rev. Lett. 63, 2369 (1989)] are discussed, and an extended bifurcation theory including these effects is presented. It is shown that the experimentally relevant plasma viscosity, effective plasma viscosity, is very similar to that obtained without including compressibility effects, even if shock exists.
引用
收藏
页码:2981 / 2988
页数:8
相关论文
共 50 条
  • [31] 'Hidden' variables affecting the L-H transition
    Fukuda, T
    PLASMA PHYSICS AND CONTROLLED FUSION, 1998, 40 (05) : 543 - 555
  • [32] Probabilistic theory of the L-H transition and causality
    Kim, Eun-jin
    Thiruthummal, Abhiram Anand
    PLASMA PHYSICS AND CONTROLLED FUSION, 2025, 67 (02)
  • [33] An alternative approach to the determination of scaling law expressions for the L-H transition in Tokamaks utilizing classification tools instead of regression
    Gaudio, P.
    Murari, A.
    Gelfusa, M.
    Lupelli, I.
    Vega, J.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2014, 56 (11)
  • [34] L-h transport barrier formation:: Monte Carlo simulation of the sheared E x B flow dynamics in tokamaks
    Heikkinen, JA
    Kiviniemi, TP
    Peeters, AG
    CONTRIBUTIONS TO PLASMA PHYSICS, 2000, 40 (3-4) : 431 - 436
  • [35] Edge turbulent transport toward the L-H transition in ASDEX Upgrade and JET-ILW
    Bonanomi, N.
    Angioni, C.
    Plank, U.
    Schneider, P. A.
    Maggi, C. F.
    PHYSICS OF PLASMAS, 2021, 28 (05)
  • [36] Formation of Edge Transport Barriers by L-H Transition and Large Reversed Plasma Current on LHD
    K. TOI
    S. OHDACHI
    F. WATANABE
    K. NARIHARA
    T. MORISAKI
    高翔
    M. GOTO
    K. IDA
    S. MASUZAKI
    K. MIYAZAWA
    S. MOR.ITA
    S. SAKAKIBARA
    K. TANAKA
    T. TOKUZAWA
    K.W. WATANABE
    严龙文
    M. YOSHINUMA
    Plasma Science and Technology, 2006, (01) : 5 - 9
  • [37] Formation of edge transport barriers by L-H transition and large reversed plasma current on LHD
    Toi, K.
    Ohdachi, S.
    Watanabe, F.
    Narihara, K.
    Morisaki, T.
    Gao, Xiang
    Goto, M.
    Ida, K.
    Masuzaki, S.
    Miyazawa, K.
    Morita, S.
    Sakakibara, S.
    Tanaka, K.
    Tokuzawa, T.
    Watanabe, K. W.
    Yan, Longwen
    Yoshinuma, M.
    PLASMA SCIENCE & TECHNOLOGY, 2006, 8 (01) : 5 - 9
  • [38] Heuristic model for the power threshold of the L-H transition
    Bilato, R.
    Angioni, C.
    Birkenmeier, G.
    Ryter, F.
    NUCLEAR FUSION, 2020, 60 (12)
  • [39] Overview of L-H Transition Experiments in Helical Devices
    Hirsch, M.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2010, 50 (6-7) : 487 - 492
  • [40] Weak hysteresis in a simplified model of the L-H transition
    Malkov, M. A.
    Diamond, P. H.
    PHYSICS OF PLASMAS, 2009, 16 (01)