Segmentation of polarimetric synthetic aperture radar data

被引:85
|
作者
Rignot, Eric
Chellappa, Rama
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[2] Univ Maryland, Dept Elect Engn, Ctr Automat Res, College Pk, MD 20742 USA
[3] Univ Maryland, Inst Adv Comp Studies, College Pk, MD 20742 USA
关键词
D O I
10.1109/83.148603
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A statistical image model is proposed for segmenting polarimetric synthetic aperture radar (SAR) data into regions of homogeneous and similar polarimetric backscatter characteristics. A model for the conditional distribution of the polarimetric complex data is combined with a Markov random field representation for the distribution of the region labels to obtain the posterior distribution. Optimal region labeling of the data is then defined as maximizing the posterior distribution of the region labels given the polarimetric SAR complex data (maximum a posteriori (MAP) estimate). An implementation of the MAP technique on a parallel optimization network is presented. A fast alternative solution is also considered. Two procedures for selecting the characteristics of the regions are then discussed: one is supervised and requires training areas, the other is unsupervised and is based on the multidimensional clustering of the logarithm of the parameters composing the polarimetric covariance matrix of the data. Results using real multilook polarimetric SAR complex data are given to illustrate the potential of the two selection procedures and evaluate the performance of the MAP segmentation technique. The impact of reducing the dimension of the polarimetric measurements on segmentation accuracy is also investigated. The results indicate that dual polarization SAR data may yield almost similar segmentation results as the fully polarimetric SAR data.
引用
收藏
页码:281 / 300
页数:20
相关论文
共 50 条
  • [21] Superpixel Segmentation of Polarimetric Synthetic Aperture Radar (SAR) Images Based on Generalized Mean Shift
    Lang, Fengkai
    Yang, Jie
    Yan, Shiyong
    Qin, Fachao
    [J]. REMOTE SENSING, 2018, 10 (10):
  • [22] POLARIMETRIC-ANISOTROPIC DECOMPOSITION OF SYNTHETIC APERTURE RADAR
    Xu, Feng
    Li, Yongchen
    Jin, Ya-Qiu
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 7505 - 7508
  • [23] Polarimetric calibration for wideband synthetic aperture radar imaging
    Ertin, E
    Potter, LC
    [J]. IEE PROCEEDINGS-RADAR SONAR AND NAVIGATION, 1998, 145 (05) : 275 - 280
  • [24] Polarimetric fusion for synthetic aperture radar target classification
    Hauter, A
    Chang, KC
    Karp, S
    [J]. PATTERN RECOGNITION, 1997, 30 (05) : 769 - 775
  • [25] Comparison of Compact Polarimetric Synthetic Aperture Radar Modes
    Nord, Michael E.
    Ainsworth, Thomas L.
    Lee, Jong-Sen
    Stacy, Nick J. S.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (01): : 174 - 188
  • [26] Simulation study on polarimetric synthetic-aperture radar
    Qi, X.Y.
    Zhu, M.H.
    Bai, Y.T.
    [J]. Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2001, 23 (09):
  • [27] Accurate sea-land segmentation using ratio of average constrained graph cut for polarimetric synthetic aperture radar data
    She, Xiaoqiang
    Qiu, Xiaolan
    Lei, Bin
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2017, 11
  • [28] The polarimetric features of oil spills in full polarimetric synthetic aperture radar images
    Honglei Zheng
    Yanmin Zhang
    Yunhua Wang
    Xi Zhang
    Junmin Meng
    [J]. Acta Oceanologica Sinica, 2017, 36 : 105 - 114
  • [29] Degree of Polarization-Based Data Filter for Fully Polarimetric Synthetic Aperture Radar
    Shang, Fang
    Kishi, Naoto
    Hirose, Akira
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (06): : 3767 - 3777
  • [30] The polarimetric features of oil spills in full polarimetric synthetic aperture radar images
    Zheng Honglei
    Zhang Yanmin
    Wang Yunhua
    Zhang Xi
    Meng Junmin
    [J]. ACTA OCEANOLOGICA SINICA, 2017, 36 (05) : 105 - 114