Superpixel Segmentation of Polarimetric Synthetic Aperture Radar (SAR) Images Based on Generalized Mean Shift

被引:49
|
作者
Lang, Fengkai [1 ]
Yang, Jie [2 ]
Yan, Shiyong [1 ]
Qin, Fachao [3 ]
机构
[1] China Univ Min & Technol, Jiangsu Key Lab Resources & Environm Informat Eng, Xuzhou 221116, Jiangsu, Peoples R China
[2] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Hubei, Peoples R China
[3] China West Normal Univ, Sch Land & Resources, Nanchong 637002, Peoples R China
来源
REMOTE SENSING | 2018年 / 10卷 / 10期
关键词
synthetic aperture radar (SAR); polarimetric SAR (PolSAR); superpixel; segmentation; mean shift; LIKELIHOOD APPROXIMATION; CLASSIFICATION; ALGORITHM; AREAS; FILTER; NOISE; MODEL;
D O I
10.3390/rs10101592
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The mean shift algorithm has been shown to perform well in optical image segmentation. However, the conventional mean shift algorithm performs poorly if it is directly used with Synthetic Aperture Radar (SAR) images due to the large dynamic range and strong speckle noise. Recently, the Generalized Mean Shift (GMS) algorithm with an adaptive variable asymmetric bandwidth has been proposed for Polarimetric SAR (PolSAR) image filtering. In this paper, the GMS algorithm is further developed for PolSAR image segmentation. A new merging predicate that is defined in the joint spatial-range domain is derived based on the GMS algorithm. A pre-sorting strategy and a post-processing step are also introduced into the GMS segmentation algorithm. The proposed algorithm can be directly used for PolSAR image superpixel segmentation without any pre-processing steps. Experiments using Airborne SAR (AirSAR) and Experimental SAR (ESAR) L-band PolSAR data demonstrate the effectiveness of the proposed superpixel segmentation algorithm. The parameter settings, stability, quality, and efficiency of the GMS algorithm are also discussed at the end of this paper.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] SUPERPIXEL SEGMENTATION OF POLARIMETRIC SAR IMAGE USING GENERALIZED MEAN SHIFT
    Lang, Fengkai
    Yang, Jie
    Wu, Lixin
    Xu, Jinyan
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 6324 - 6327
  • [2] Superpixel-Based Classification of Polarimetric Synthetic Aperture Radar Images
    Liu, Bin
    Hu, Hao
    Wang, Huanyu
    Wang, Kaizhi
    Liu, Xingzhao
    Yu, Wenxian
    [J]. 2011 IEEE RADAR CONFERENCE (RADAR), 2011, : 606 - 611
  • [3] SLIC Superpixel Segmentation for Polarimetric SAR Images
    Yin, Junjun
    Wang, Tao
    Du, Yanlei
    Liu, Xiyun
    Zhou, Liangjiang
    Yang, Jian
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [4] Unsupervised Segmentation of Multilook Polarimetric Synthetic Aperture Radar Images
    Bouhlel, Nizar
    Meric, Stephane
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (08): : 6104 - 6118
  • [5] SUPERPIXEL SEGMENTATION WITH BOUNDARY CONSTRAINTS FOR POLARIMETRIC SAR IMAGES
    Lin, Huiping
    Bao, Junliang
    Yin, Junjun
    Yang, Jian
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6195 - 6198
  • [6] Segmentation of polarimetric synthetic aperture radar data
    Rignot, Eric
    Chellappa, Rama
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 1992, 1 (03) : 281 - 300
  • [7] An Adaptive Seed Point Selection Technique for Segmentation of Polarimetric Synthetic Aperture Radar Images
    Chaudhuri, Sanjay D.
    Singh, Manish P.
    Mishra, Abhai
    [J]. 2013 IEEE SECOND INTERNATIONAL CONFERENCE ON IMAGE INFORMATION PROCESSING (ICIIP), 2013, : 21 - 26
  • [8] Scattering Feature-Driven Superpixel Segmentation for Polarimetric SAR Images
    Quan, Sinong
    Xiang, Deliang
    Wang, Wei
    Xiong, Boli
    Kuang, Gangyao
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 2173 - 2183
  • [9] Polarimetric synthetic aperture radar (SAR) three dimensional imaging
    Liang, Huaining
    Wang, Jianguo
    Huang, Shunji
    [J]. Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2002, 24 (05):
  • [10] Automatic segmentation for synthetic aperture radar images
    Li, Ying
    Shi, Qin-Feng
    Zhang, Yan-Ning
    Zhao, Rong-Chun
    [J]. Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2006, 28 (05): : 932 - 935