Segmentation of polarimetric synthetic aperture radar data

被引:85
|
作者
Rignot, Eric
Chellappa, Rama
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[2] Univ Maryland, Dept Elect Engn, Ctr Automat Res, College Pk, MD 20742 USA
[3] Univ Maryland, Inst Adv Comp Studies, College Pk, MD 20742 USA
关键词
D O I
10.1109/83.148603
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A statistical image model is proposed for segmenting polarimetric synthetic aperture radar (SAR) data into regions of homogeneous and similar polarimetric backscatter characteristics. A model for the conditional distribution of the polarimetric complex data is combined with a Markov random field representation for the distribution of the region labels to obtain the posterior distribution. Optimal region labeling of the data is then defined as maximizing the posterior distribution of the region labels given the polarimetric SAR complex data (maximum a posteriori (MAP) estimate). An implementation of the MAP technique on a parallel optimization network is presented. A fast alternative solution is also considered. Two procedures for selecting the characteristics of the regions are then discussed: one is supervised and requires training areas, the other is unsupervised and is based on the multidimensional clustering of the logarithm of the parameters composing the polarimetric covariance matrix of the data. Results using real multilook polarimetric SAR complex data are given to illustrate the potential of the two selection procedures and evaluate the performance of the MAP segmentation technique. The impact of reducing the dimension of the polarimetric measurements on segmentation accuracy is also investigated. The results indicate that dual polarization SAR data may yield almost similar segmentation results as the fully polarimetric SAR data.
引用
收藏
页码:281 / 300
页数:20
相关论文
共 50 条
  • [1] Unsupervised Segmentation of Multilook Polarimetric Synthetic Aperture Radar Images
    Bouhlel, Nizar
    Meric, Stephane
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (08): : 6104 - 6118
  • [2] Compression of polarimetric synthetic aperture radar data - Abstract
    El Assad, S
    Morin, X
    Barba, D
    Slavova, V
    [J]. JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2003, 17 (05) : 747 - 748
  • [3] Global Polarimetric Synthetic Aperture Radar Image Segmentation with Data Augmentation and Hybrid Architecture Model
    Wang, Zehua
    Wang, Zezhong
    Qiu, Xiaolan
    Zhang, Zhe
    [J]. REMOTE SENSING, 2024, 16 (02)
  • [4] Polarimetric synthetic aperture radar data and the complex Wishart distribution
    Nielsen, AA
    Conradsen, K
    Skriver, H
    [J]. IMAGE ANALYSIS, PROCEEDINGS, 2003, 2749 : 1082 - 1089
  • [5] Polarimetric Calibration of Circularly Polarized Synthetic Aperture Radar Data
    Pincus, Paul
    Preiss, Mark
    Goh, Alvin S.
    Gray, Douglas
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (12): : 6824 - 6839
  • [6] A Multitexture Model for Multilook Polarimetric Synthetic Aperture Radar Data
    Eltoft, Torbjorn
    Anfinsen, Stian Normann
    Doulgeris, Anthony P.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (05): : 2910 - 2919
  • [7] SEGMENTATION OF SYNTHETIC-APERTURE-RADAR COMPLEX DATA
    RIGNOT, E
    CHELLAPPA, R
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1991, 8 (09): : 1499 - 1509
  • [8] A STATISTICAL DESCRIPTION OF POLARIMETRIC AND INTERFEROMETRIC SYNTHETIC-APERTURE RADAR DATA
    TOUGH, RJA
    BLACKNELL, D
    QUEGAN, S
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1995, 449 (1937): : 567 - 589
  • [9] Efficient parallel implementation of polarimetric synthetic aperture radar data processing
    Martinez, Sergio S.
    Marpu, Prashanth R.
    Plaza, Antonio J.
    [J]. HIGH-PERFORMANCE COMPUTING IN REMOTE SENSING IV, 2014, 9247
  • [10] Data Arrangement With Rotation Transformation for Fully Polarimetric Synthetic Aperture Radar
    Shang, Fang
    Huang, Xiaoyun
    Liu, Hai
    Hirose, Akira
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (03) : 436 - 440