Global Polarimetric Synthetic Aperture Radar Image Segmentation with Data Augmentation and Hybrid Architecture Model

被引:1
|
作者
Wang, Zehua [1 ,2 ,3 ,4 ]
Wang, Zezhong [1 ,2 ]
Qiu, Xiaolan [1 ,2 ,3 ,4 ]
Zhang, Zhe [1 ,2 ,3 ,4 ,5 ]
机构
[1] Key Lab Microwave Imaging Proc & Applicat Technol, Suzhou 215128, Peoples R China
[2] Suzhou Aerosp Informat Res Inst, Suzhou 215128, Peoples R China
[3] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100049, Peoples R China
[4] Univ Chinese Acad Sci, Sch Elect Elect & Commun, Engn, Beijing 100049, Peoples R China
[5] Natl Key Lab Microwave Imaging Technol, Beijing 100190, Peoples R China
基金
国家重点研发计划;
关键词
PolSAR image; land cover classification; hybrid architecture; cross-layer attention; data augmentation; SCATTERING MODEL; CLASSIFICATION;
D O I
10.3390/rs16020380
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Machine learning and deep neural networks have shown satisfactory performance in the supervised classification of Polarimetric Synthetic Aperture Radar (PolSAR) images. However, the PolSAR image classification task still faces some challenges. First, the current form of model input used for this task inevitably involves tedious preprocessing. In addition, issues such as insufficient labels and the design of the model also affect classification performance. To address these issues, this study proposes an augmentation method to better utilize the labeled data and improve the input format of the model, and an end-to-end PolSAR image global classification is implemented on our proposed hybrid network, PolSARMixer. Experimental results demonstrate that, compared to existing methods, our proposed method reduces the steps for the classification of PolSAR images, thus eliminating repetitive data preprocessing procedures and significantly improving classification performance.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Segmentation of polarimetric synthetic aperture radar data
    Rignot, Eric
    Chellappa, Rama
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 1992, 1 (03) : 281 - 300
  • [2] Polarimetric Synthetic Aperture Radar Image Classification by a Hybrid Method
    Kamran Ullah Khan
    杨建
    [J]. Tsinghua Science and Technology, 2007, (01) : 97 - 104
  • [3] Polarimetric Synthetic Aperture Radar Image Classification by a Hybrid Method
    Khan, Kamran Ullah
    Yang, Jian
    [J]. Tsinghua Science and Technology, 2007, 12 (01) : 97 - 104
  • [4] A Multitexture Model for Multilook Polarimetric Synthetic Aperture Radar Data
    Eltoft, Torbjorn
    Anfinsen, Stian Normann
    Doulgeris, Anthony P.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (05): : 2910 - 2919
  • [5] Unsupervised Segmentation of Multilook Polarimetric Synthetic Aperture Radar Images
    Bouhlel, Nizar
    Meric, Stephane
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (08): : 6104 - 6118
  • [6] Compression of polarimetric synthetic aperture radar data - Abstract
    El Assad, S
    Morin, X
    Barba, D
    Slavova, V
    [J]. JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2003, 17 (05) : 747 - 748
  • [7] Urban Area Detection for Polarimetric Synthetic Aperture Radar Image
    Chen Zhi-peng
    Xue Hui-feng
    [J]. 2013 THIRD INTERNATIONAL CONFERENCE ON INSTRUMENTATION & MEASUREMENT, COMPUTER, COMMUNICATION AND CONTROL (IMCCC), 2013, : 1029 - 1034
  • [8] Polarimetric synthetic aperture radar image segmentation by convolutional neural network using graphical processing units
    Wang, Shui-Hua
    Sun, Junding
    Phillips, Preetha
    Zhao, Guihu
    Zhang, Yu-Dong
    [J]. JOURNAL OF REAL-TIME IMAGE PROCESSING, 2018, 15 (03) : 631 - 642
  • [9] Polarimetric Synthetic Aperture Radar Image Semantic Segmentation Network with Lovasz-Softmax Loss Optimization
    Guo, Rui
    Zhao, Xiaopeng
    Zuo, Guanzhong
    Wang, Ying
    Liang, Yi
    [J]. REMOTE SENSING, 2023, 15 (19)
  • [10] Polarimetric synthetic aperture radar image segmentation by convolutional neural network using graphical processing units
    Shui-Hua Wang
    Junding Sun
    Preetha Phillips
    Guihu Zhao
    Yu-Dong Zhang
    [J]. Journal of Real-Time Image Processing, 2018, 15 : 631 - 642