SUPERPIXEL SEGMENTATION OF POLARIMETRIC SAR IMAGE USING GENERALIZED MEAN SHIFT

被引:1
|
作者
Lang, Fengkai [1 ]
Yang, Jie [2 ]
Wu, Lixin [1 ]
Xu, Jinyan [3 ]
机构
[1] China Univ Min & Technol, Sch Environm Sci & Spatial Informat, Xuzhou, Peoples R China
[2] Wuhan Univ, LIESMARS, Wuhan, Peoples R China
[3] State Ocean Adm, Isl Res Ctr, Pingtan, Peoples R China
关键词
synthetic aperture radar (SAR); polarimetric SAR (PolSAR); superpixel; segmentation; mean shift; CLASSIFICATION; AREAS;
D O I
10.1109/IGARSS.2016.7730653
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The mean shift algorithm shows a good performance in optical image segmentation. However, conventional mean shift algorithm performs poorly if it is used directly to synthetic aperture radar (SAR) image due to the large dynamic range and strong speckle noise. Recently, a generalized mean shift (GMS) algorithm with an adaptive variable asymmetric bandwidth was proposed for polarimetric SAR (PolSAR) image filtering. In this paper, it is further developed and extended for PolSAR image segmentation. The proposed algorithm can be used for PolSAR image superpixel segmentation directly without any preprocessing steps. Experiments using AirSAR and ESAR L-band PolSAR data demonstrate the effectiveness of the proposed superpixel segmentation algorithm.
引用
收藏
页码:6324 / 6327
页数:4
相关论文
共 50 条
  • [1] Superpixel Segmentation of Polarimetric Synthetic Aperture Radar (SAR) Images Based on Generalized Mean Shift
    Lang, Fengkai
    Yang, Jie
    Yan, Shiyong
    Qin, Fachao
    [J]. REMOTE SENSING, 2018, 10 (10):
  • [2] MEAN-SHIFT AND HIERARCHICAL CLUSTERING FOR TEXTURED POLARIMETRIC SAR IMAGE SEGMENTATION/CLASSIFICATION
    Beaulieu, Jean-Marie
    Touzi, Ridha
    [J]. 2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 2519 - 2522
  • [3] SLIC Superpixel Segmentation for Polarimetric SAR Images
    Yin, Junjun
    Wang, Tao
    Du, Yanlei
    Liu, Xiyun
    Zhou, Liangjiang
    Yang, Jian
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [4] Polarimetric SAR Image Classification Based on Deep Belief Network and Superpixel Segmentation
    Ge, Shaojia
    Lu, Jianchun
    Gu, Hong
    Yuan, Zeshi
    Su, Weimin
    [J]. 2017 3RD INTERNATIONAL CONFERENCE ON FRONTIERS OF SIGNAL PROCESSING (ICFSP), 2017, : 114 - 119
  • [5] Superpixel Segmentation for Polarimetric SAR Imagery Using Local Iterative Clustering
    Qin, Fachao
    Guo, Jiming
    Lang, Fengkai
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (01) : 13 - 17
  • [6] Superpixel segmentation using multiple SAR image products
    Moya, Mary M.
    Koch, Mark W.
    Perkins, David N.
    West, R. Derek
    [J]. RADAR SENSOR TECHNOLOGY XVIII, 2014, 9077
  • [7] SUPERPIXEL SEGMENTATION WITH BOUNDARY CONSTRAINTS FOR POLARIMETRIC SAR IMAGES
    Lin, Huiping
    Bao, Junliang
    Yin, Junjun
    Yang, Jian
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6195 - 6198
  • [8] Polarimetric SAR Image Segmentation using CEM Algorithm
    Michelli, J. I. F.
    Hurtado, M.
    Areta, J. A.
    Muravchik, C. H.
    [J]. IEEE LATIN AMERICA TRANSACTIONS, 2014, 12 (05) : 910 - 914
  • [9] Polarimetric SAR Image Segmentation using CEM Algorithm
    [J]. 1600, IEEE Computer Society (12):
  • [10] Multifocus image fusion using superpixel segmentation and superpixel-based mean filtering
    Duan, Junwei
    Chen, Long
    Chen, C. L. Philip
    [J]. APPLIED OPTICS, 2016, 55 (36) : 10352 - 10362