THE NUMBER OF ZERO SUMS MODULO M IN A SEQUENCE OF LENGTH N

被引:9
|
作者
KISIN, M
机构
[1] Department of Mathematics, Princeton University, Princeton, N.J. 08544-1000, Fine Hall Washington Road
关键词
D O I
10.1112/S0025579300007257
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a result related to the Erdos-Ginzburg-Ziv theorem: Let p and q be primes, alpha a positive integer, and m is-an-element-of {p(alpha), p(alpha)q}. Then for any sequence of integers c = {c1, c2, ..., c(n)} there are at least [GRAPHICS] subsequences of length m, whose terms add up to 0 modulo m (Theorem 8). We also show why it is unlikely that the result is true for any m not of the form p(alpha) or p(alpha)q (Theorem 9).
引用
收藏
页码:149 / 163
页数:15
相关论文
共 50 条
  • [31] On subsequence sums of a zero-sum free sequence
    Sun, Fang
    ELECTRONIC JOURNAL OF COMBINATORICS, 2007, 14 (01):
  • [32] SOME PROPERTIES OF THE TETRANACCI SEQUENCE MODULO-M
    WADDILL, ME
    FIBONACCI QUARTERLY, 1992, 30 (03): : 232 - 238
  • [33] k-step Fibonacci sequence modulo m
    Lu, Kebo
    Wang, Jun
    UTILITAS MATHEMATICA, 2006, 71 : 169 - 177
  • [34] On a Congruence Modulo n(3) Involving Two Consecutive Sums of Powers
    Mestrovic, Romeo
    JOURNAL OF INTEGER SEQUENCES, 2014, 17 (08)
  • [35] THE DISTRIBUTION OF THE NUMBER OF PARTS OF m-ARY PARTITIONS MODULO m
    Edgar, Tom
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2017, 47 (06) : 1825 - 1838
  • [36] On the number of unit solutions of cubic congruence modulo n
    Zhao, Junyong
    AIMS MATHEMATICS, 2021, 6 (12): : 13515 - 13524
  • [37] The Polychromatic Number of Small Subsets of the Integers Modulo n
    Emelie Curl
    John Goldwasser
    Joe Sampson
    Michael Young
    Graphs and Combinatorics, 2022, 38
  • [38] The Polychromatic Number of Small Subsets of the Integers Modulo n
    Curl, Emelie
    Goldwasser, John
    Sampson, Joe
    Young, Michael
    GRAPHS AND COMBINATORICS, 2022, 38 (03)
  • [39] On the number of semi-primitive roots modulo n
    Goswami, Pinkimani
    Singh, Madan Mohan
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2015, 21 (04) : 48 - 55
  • [40] On subsequence sums of a zero-sum free sequence II
    Gao, Weidong
    Li, Yuanlin
    Peng, Jiangtao
    Sun, Fang
    ELECTRONIC JOURNAL OF COMBINATORICS, 2008, 15 (01):