THE NUMBER OF ZERO SUMS MODULO M IN A SEQUENCE OF LENGTH N

被引:9
|
作者
KISIN, M
机构
[1] Department of Mathematics, Princeton University, Princeton, N.J. 08544-1000, Fine Hall Washington Road
关键词
D O I
10.1112/S0025579300007257
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a result related to the Erdos-Ginzburg-Ziv theorem: Let p and q be primes, alpha a positive integer, and m is-an-element-of {p(alpha), p(alpha)q}. Then for any sequence of integers c = {c1, c2, ..., c(n)} there are at least [GRAPHICS] subsequences of length m, whose terms add up to 0 modulo m (Theorem 8). We also show why it is unlikely that the result is true for any m not of the form p(alpha) or p(alpha)q (Theorem 9).
引用
收藏
页码:149 / 163
页数:15
相关论文
共 50 条
  • [21] Counting certain quadratic partitions of zero modulo a prime number
    Xiao, Wang
    Li, Aihua
    OPEN MATHEMATICS, 2021, 19 (01): : 198 - 211
  • [22] On subset sums of Znx which are equally distributed modulo n
    Konstantinos, Gaitanas
    ARCHIV DER MATHEMATIK, 2023, 121 (01) : 47 - 54
  • [23] Characterizing the Number of m-ary Partitions Modulo m
    Andrews, George E.
    Fraenkel, Aviezri S.
    Sellers, James A.
    AMERICAN MATHEMATICAL MONTHLY, 2015, 122 (09): : 880 - 885
  • [24] Is the Sequence of the Prime-number Sums limited?
    Mueller, Tom
    ELEMENTE DER MATHEMATIK, 2011, 66 (04) : 146 - 154
  • [25] The odd-number sequence: squares and sums
    Leyendekkers, J. V.
    Shannon, A. G.
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2015, 46 (08) : 1222 - 1228
  • [26] On the number of representations by n! modulo a prime and applications
    Garaev, Moubariz Z.
    Garcia, Victor C.
    MONATSHEFTE FUR MATHEMATIK, 2022, 198 (03): : 535 - 545
  • [27] On the number of representations by n! modulo a prime and applications
    Moubariz Z. Garaev
    Victor C. García
    Monatshefte für Mathematik, 2022, 198 : 535 - 545
  • [28] The divisibility modulo 24 of Kloosterman sums on GF (2m), m odd
    Charpin, Pascale
    Helleseth, Tor
    Zinoviev, Victor
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2007, 114 (02) : 322 - 338
  • [29] The divisibility modulo 24 of Kloosterman sums on GF(2m), m even
    Moisio, Marko
    FINITE FIELDS AND THEIR APPLICATIONS, 2009, 15 (02) : 174 - 184
  • [30] SUMS OF POWERS OF NUMBERS HAVING A GIVEN PERIOD MODULO-M
    MAXFIELD, JE
    MAXFIELD, MW
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1953, 59 (05) : 451 - 451