PERTURBATIONS OF MAXIMAL MONOTONE RANDOM OPERATORS

被引:3
|
作者
KRAVVARITIS, D
STAVRAKAKIS, N
机构
关键词
D O I
10.1016/0024-3795(86)90322-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:301 / 310
页数:10
相关论文
共 50 条
  • [21] A Characterization of Maximal Monotone Operators
    Loehne, Andreas
    [J]. SET-VALUED ANALYSIS, 2008, 16 (5-6): : 693 - 700
  • [22] Regular Maximal Monotone Operators
    Andrei Verona
    Maria E. Verona
    [J]. Set-Valued Analysis, 1998, 6 : 303 - 312
  • [23] Regular maximal monotone operators
    Verona, A
    Verona, ME
    [J]. SET-VALUED ANALYSIS, 1998, 6 (03): : 303 - 312
  • [24] On the convergence of maximal monotone operators
    Penot, JP
    Alinescu, CZ
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (07) : 1937 - 1946
  • [25] A Characterization of Maximal Monotone Operators
    Andreas Löhne
    [J]. Set-Valued Analysis, 2008, 16 : 693 - 700
  • [26] IMAGE OF MAXIMAL MONOTONE OPERATORS
    BROWDER, FE
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 287 (10): : 755 - 757
  • [27] Various Perturbations of Time Dependent Maximal Monotone/Accretive Operators in Evolution Inclusions with Applications
    Castaing, Charles
    Godet-Thobie, Christiane
    Saidi, Soumia
    Marques, Manuel D. P. Monteiro
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2023, 87 (02):
  • [28] Various Perturbations of Time Dependent Maximal Monotone/Accretive Operators in Evolution Inclusions with Applications
    Charles Castaing
    Christiane Godet-Thobie
    Soumia Saïdi
    Manuel D. P. Monteiro Marques
    [J]. Applied Mathematics & Optimization, 2023, 87
  • [29] On the Surjectivity Properties of Perturbations of Maximal Monotone Operators in Non-Reflexive Banach Spaces
    Alves, M. Marques
    Svaiter, B. F.
    [J]. JOURNAL OF CONVEX ANALYSIS, 2011, 18 (01) : 209 - 226
  • [30] Multi-Valued Perturbations to a Couple of Differential Inclusions Governed by Maximal Monotone Operators
    Azzam-Laouir, D.
    Benguessoum, M.
    [J]. FILOMAT, 2021, 35 (13) : 4369 - 4380