On the convergence of maximal monotone operators

被引:11
|
作者
Penot, JP
Alinescu, CZ
机构
[1] Fac Sci, CNRS, ERS 2055, Lab Math Appl, F-64000 Pau, France
[2] Alexandru Ioan Cuza Univ, Fac Math, Iasi 700506, Romania
关键词
bounded convergence; convergence; convex function; maximal monotone operator; monotone operator; qualification condition;
D O I
10.1090/S0002-9939-05-08275-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the convergence of maximal monotone operators with the help of representations by convex functions. In particular, we prove the convergence of a sequence of sums of maximal monotone operators under a general qualification condition of the Attouch-Brezis type.
引用
收藏
页码:1937 / 1946
页数:10
相关论文
共 50 条
  • [1] CONVERGENCE OF MAXIMAL MONOTONE OPERATORS AND VARIATIONAL INEQUALITIES
    ATTOUCH, H
    KONISHI, Y
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 282 (09): : 467 - 469
  • [2] Convergence of maximal monotone operators in a Hilbert space
    Alexander A. Tolstonogov
    Nonlinear Differential Equations and Applications NoDEA, 2022, 29
  • [3] Convergence of maximal monotone operators in a Hilbert space
    Tolstonogov, Alexander A.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2022, 29 (06):
  • [4] NOTES ON GRAPH-CONVERGENCE FOR MAXIMAL MONOTONE OPERATORS
    Cianciaruso, Filomena
    Marino, Giuseppe
    Muglia, Luigi
    Xu, Hong-Kun
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 83 (01) : 22 - 29
  • [5] THE G-CONVERGENCE OF MAXIMAL MONOTONE NEMYTSKII OPERATORS
    Tolstonogov, A. A.
    SIBERIAN MATHEMATICAL JOURNAL, 2022, 63 (06) : 1169 - 1180
  • [6] HIERARCHICAL CONVERGENCE TO THE ZERO POINT OF MAXIMAL MONOTONE OPERATORS
    Yao, Yonghong
    Liou, Yeong-Cheng
    Wong, Mu-Ming
    Ya, Jen-Chih
    FIXED POINT THEORY, 2012, 13 (01): : 293 - 306
  • [7] Strong convergence of projection scheme for zeros of maximal monotone operators
    Wei, Li
    Zhou, Haiyun
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (1-2) : 341 - 346
  • [8] Strong convergence theorems for maximal monotone operators in Banach spaces
    Ceng, L. C.
    Schaible, S.
    Yao, J. C.
    OPTIMIZATION, 2010, 59 (06) : 807 - 819
  • [9] Strong Convergence of Monotone Hybrid Method for Maximal Monotone Operators and Hemirelatively Nonexpansive Mappings
    Klin-eam, Chakkrid
    Suantai, Suthep
    FIXED POINT THEORY AND APPLICATIONS, 2009,
  • [10] Strong Convergence of Monotone Hybrid Method for Maximal Monotone Operators and Hemirelatively Nonexpansive Mappings
    Chakkrid Klin-eam
    Suthep Suantai
    Fixed Point Theory and Applications, 2009