THE NONCONVEX MULTIDIMENSIONAL RIEMANN PROBLEM FOR HAMILTON-JACOBI EQUATIONS

被引:51
|
作者
BARDI, M [1 ]
OSHER, S [1 ]
机构
[1] UNIV CALIF LOS ANGELES,DEPT MATH,LOS ANGELES,CA 90024
关键词
HAMILTON-JACOBI EQUATIONS; VISCOSITY SOLUTIONS; RIEMANN PROBLEM; GODUNOV SCHEME; HOPF REPRESENTATION FORMULAS;
D O I
10.1137/0522022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Simple inequalities are presented for the viscosity solution of a Hamilton-Jacobi equation in N space dimension when neither the initial data nor the Hamiltonian need be convex (or concave). The initial data are uniformly Lipschitz and can be written as the sum of a convex function in a group of variables and a concave function in the remaining variables, therefore including the nonconvex Riemann problem. The inequalities become equalities wherever a "maxmin" equals a "minmax" and thus a representation formula for this problem is then obtained, generalizing the classical Hopf's formulas.
引用
收藏
页码:344 / 351
页数:8
相关论文
共 50 条