THE NONCONVEX MULTIDIMENSIONAL RIEMANN PROBLEM FOR HAMILTON-JACOBI EQUATIONS

被引:51
|
作者
BARDI, M [1 ]
OSHER, S [1 ]
机构
[1] UNIV CALIF LOS ANGELES,DEPT MATH,LOS ANGELES,CA 90024
关键词
HAMILTON-JACOBI EQUATIONS; VISCOSITY SOLUTIONS; RIEMANN PROBLEM; GODUNOV SCHEME; HOPF REPRESENTATION FORMULAS;
D O I
10.1137/0522022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Simple inequalities are presented for the viscosity solution of a Hamilton-Jacobi equation in N space dimension when neither the initial data nor the Hamiltonian need be convex (or concave). The initial data are uniformly Lipschitz and can be written as the sum of a convex function in a group of variables and a concave function in the remaining variables, therefore including the nonconvex Riemann problem. The inequalities become equalities wherever a "maxmin" equals a "minmax" and thus a representation formula for this problem is then obtained, generalizing the classical Hopf's formulas.
引用
收藏
页码:344 / 351
页数:8
相关论文
共 50 条
  • [21] Hypercontractivity of Hamilton-Jacobi equations
    Bobkov, SG
    Gentil, I
    Ledoux, M
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (07): : 669 - 696
  • [22] Systems of Hamilton-Jacobi equations
    Julio Cambronero
    Javier Pérez Álvarez
    Journal of Nonlinear Mathematical Physics, 2019, 26 : 650 - 658
  • [23] Stochastic homogenization of nonconvex viscous Hamilton-Jacobi equations in one space dimension
    Davini, Andrea
    Kosygina, Elena
    Yilmaz, Atilla
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2024, 49 (7-8) : 698 - 734
  • [24] Relaxation of Hamilton-Jacobi Equations
    Hitoshi Ishii
    Paola Loreti
    Archive for Rational Mechanics and Analysis, 2003, 169 : 265 - 304
  • [25] Hopf-type estimates and formulas for nonconvex nonconcave Hamilton-Jacobi equations
    Bardi, M
    Faggian, S
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (05) : 1067 - 1086
  • [26] Adaptive central-upwind schemes for Hamilton-Jacobi equations with nonconvex Hamiltonians
    Kurganov, Alexander
    Petrova, Guergana
    JOURNAL OF SCIENTIFIC COMPUTING, 2006, 27 (1-3) : 323 - 333
  • [27] On vectorial Hamilton-Jacobi equations
    Imbert, C
    Volle, M
    CONTROL AND CYBERNETICS, 2002, 31 (03): : 493 - 506
  • [28] STOCHASTIC HOMOGENIZATION OF NONCONVEX VISCOUS HAMILTON-JACOBI EQUATIONS IN ONE SPACE DIMENSION
    Davini, Andrea
    Kosygina, Elena
    Yilmaz, Atilla
    arXiv, 2023,
  • [29] Hamilton-Jacobi equations for optimal control on multidimensional junctions with entry costs
    Dao, Manh-Khang
    Djehiche, Boualem
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2020, 27 (02):
  • [30] Multidimensional smoothness indicators for first-order Hamilton-Jacobi equations
    Falcone, Maurizio
    Paolucci, Giulio
    Tozza, Silvia
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 409 (409)