METRIC FORMULAE FOR NONCONVEX HAMILTON-JACOBI EQUATIONS AND APPLICATIONS

被引:0
|
作者
Marigonda, A. [1 ]
Siconolfi, A. [2 ]
机构
[1] Univ Verona, Dip Informat, I-37134 Verona, Italy
[2] Univ Roma La Sapienza, Dip Matemat G Castelnuovo, I-00185 Rome, Italy
关键词
VISCOSITY SOLUTIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Hamilton-Jacobi equation H(x, Du) = 0 in R(n), with H not enjoying any convexity properties in the second variable. Our aim is to establish existence and nonexistence theorems for viscosity solutions of associated Dirichlet problems, find representation formulae and prove comparison principles. Our analysis is based on the introduction of a metric intrinsically related to the 0-sublevels of the Hamiltonian, given by an inf-sup game theoretic formula. We also study the case where the equation is critical; i.e., H(x, Du) = -epsilon does not admit any viscosity subsolution, for epsilon > 0.
引用
收藏
页码:691 / 724
页数:34
相关论文
共 50 条