MULTIFRACTAL SPECTRA OF MULTI-AFFINE FUNCTIONS

被引:103
|
作者
BARABASI, AL
SZEPFALUSY, P
VICSEK, T
机构
[1] EOTVOS LORAND UNIV,INST SOLID STATE PHYS,H-1445 BUDAPEST,HUNGARY
[2] HUNGARIAN ACAD SCI,CENT RES INST PHYS,H-1525 BUDAPEST,HUNGARY
[3] INST TECH PHYS,H-1325 BUDAPEST,HUNGARY
来源
PHYSICA A | 1991年 / 178卷 / 01期
基金
匈牙利科学研究基金会;
关键词
D O I
10.1016/0378-4371(91)90072-K
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Self-affine functions F(chi) with multiscaling height correlations C(q)(chi) approximately chi(qH)q are described in terms of the standard multifractal formalism with a modified assumption for the partition. The corresponding quantities and expressions are shown to exhibit some characteristic differences from the standard ones. According to our calculations the f(alpha) type spectra are not uniquely determined by the H(q) spectrum, but depend on the particular choice which is made for the dependence of N on chi, where N is the number of points over which the average is taken. Our results are expected to be relevant in the analysis of signal type data obtained in experiments on systems with an underlying multiplicative process.
引用
收藏
页码:17 / 28
页数:12
相关论文
共 50 条
  • [21] MULTI-SINGULAR AND MULTI-AFFINE PROPERTIES OF BOUNDED CASCADE MODELS
    Marshak, A.
    Davis, A.
    Cahalan, R.
    Wiscombe, W.
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 1993, 1 (03) : 702 - 710
  • [22] MULTI-AFFINE MODEL FOR THE VELOCITY DISTRIBUTION IN FULLY TURBULENT FLOWS
    VICSEK, T
    BARABASI, AL
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (15): : L845 - L851
  • [23] Topology of real multi-affine hypersurfaces and a homological stability property
    Basu, Saugata
    Perrucci, Daniel
    [J]. ADVANCES IN MATHEMATICS, 2023, 420
  • [24] Multifractal Spectra of Random Self-Affine Multifractal Sierpinski Sponges in Rd
    Fraser, J. M.
    Olsen, L.
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2011, 60 (03) : 937 - 983
  • [25] Control of multi-affine systems on rectangles with applications to hybrid biomolecular networks
    Belta, C
    Habets, LCGJM
    Kumar, V
    [J]. PROCEEDINGS OF THE 41ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 2002, : 534 - 539
  • [26] MARCO:: A reachability algorithm for multi-affine systems with applications to biological systems
    Berman, Spring
    Halasz, Adam
    Kumar, Vijay
    [J]. HYBRID SYSTEMS: COMPUTATION AND CONTROL, PROCEEDINGS, 2007, 4416 : 76 - +
  • [27] Contour loop analysis of multi-affine nanostructure AZO rough surfaces
    Hosseinabadi, S.
    Shirazi, M.
    [J]. SURFACE TOPOGRAPHY-METROLOGY AND PROPERTIES, 2019, 7 (03):
  • [28] Computational Analysis of Large-Scale Multi-Affine ODE Models
    Barnat, J.
    Brim, L.
    Cerna, I.
    Drazan, S.
    Fabrikova, J.
    Safranek, D.
    [J]. 2009 INTERNATIONAL WORKSHOP ON HIGH PERFORMANCE COMPUTATIONAL SYSTEMS BIOLOGY, PROCEEDINGS, 2009, : 81 - 90
  • [29] A novel control-oriented multi-affine qLPV modeling framework
    Szabo, Z.
    Gaspar, P.
    Bokor, J.
    [J]. 18TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION, 2010, : 1019 - 1024
  • [30] LMI-Based Stability Analysis for Piecewise Multi-affine Systems
    Nguyen, Anh-Tu
    Sugeno, Michio
    Campos, Victor
    Dambrine, Michel
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2017, 25 (03) : 707 - 714