A novel control-oriented multi-affine qLPV modeling framework

被引:9
|
作者
Szabo, Z. [1 ]
Gaspar, P. [1 ]
Bokor, J. [1 ]
机构
[1] Hungarian Acad Sci, Comp & Automat Res Inst, H-1051 Budapest, Hungary
关键词
LPV SYSTEM-ANALYSIS; PARAMETER;
D O I
10.1109/MED.2010.5547660
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a framework for selecting affinely parametrized qLPV model structures that facilitates solutions to specific control design tasks. Moreover it facilitates the selection of the scheduling variables and provides a framework to decide whether the controller performance can be improved by introducing some estimated parameters as scheduling variables, i.e. if some adaptive strategy is needed or not. The proposed scheme is an iterative process: in every step a Tensor Product (TP) model transformation is applied to generate a finite element convex polytopic representation in order to obtain a quasi Linear Parameter Varying model. Then the LMI feasability of a robust control objective is verified, which is closely related to the original control task. This step provides a selection criterion that sorts out the suitable models from a finite set of model candidates generated by the TP method.
引用
收藏
页码:1019 / 1024
页数:6
相关论文
共 50 条
  • [1] A Learning Framework for Control-Oriented Modeling of Buildings
    Rubio-Herrero, Javier
    Chandan, Vikas
    Siegel, Charles M.
    Vishnu, Abhinav
    Vrabie, Draguna L.
    [J]. 2017 16TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2017, : 473 - 478
  • [2] Control of rectangular multi-affine hybrid systems
    Habets, L. C. G. J. M.
    Kloetzer, M.
    Belta, C.
    [J]. PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 2623 - +
  • [3] Control-oriented modeling of TCLs
    Coffman, Austin R.
    Busic, Ana
    Barooah, Prabir
    [J]. 2021 AMERICAN CONTROL CONFERENCE (ACC), 2021, : 4148 - 4154
  • [4] Generalised control-oriented modelling framework for multi-energy systems
    Long, Sebastian
    Marjanovic, Ognjen
    Parisio, Alessandra
    [J]. APPLIED ENERGY, 2019, 235 : 320 - 331
  • [5] Control-oriented Modeling for Hypersonic Vehicle Control
    Wei Qingkai
    Huang Xun
    [J]. PROCEEDINGS OF 2010 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON AEROSPACE TECHNOLOGY, VOL 1 AND 2, 2010, : 597 - 599
  • [6] Engine control-oriented fuzzy modeling
    Bortolet, P
    Boverie, S
    Titli, A
    [J]. PROCEEDINGS OF THE SIXTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS I - III, 1997, : 409 - 414
  • [7] Control-Oriented Modeling for Flexible Aircraft
    Duan, Molong
    Cesnik, Carlos E. S.
    Kolmanovsky, Ilya V.
    Vetrano, Fabio
    [J]. JOURNAL OF AIRCRAFT, 2024, 61 (01): : 183 - 195
  • [8] Control of multi-affine systems on rectangles with applications to hybrid biomolecular networks
    Belta, C
    Habets, LCGJM
    Kumar, V
    [J]. PROCEEDINGS OF THE 41ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 2002, : 534 - 539
  • [9] A Tutorial on Control-Oriented Modeling and Control of Wind Farms
    Boersma, S.
    Doekemeijer, B. M.
    Gebraad, P. M. O.
    Fleming, P. A.
    Annoni, J.
    Scholbrock, A. K.
    Frederik, J. A.
    van Wingerden, J-W.
    [J]. 2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 1 - 18
  • [10] TURBOCHARGER MAP REDUCTION FOR CONTROL-ORIENTED MODELING
    Stricker, Karla
    Kocher, Lyle
    Koeberlein, Ed
    Van Alstine, D. G.
    Shaver, Greg
    [J]. PROCEEDINGS OF THE ASME DYNAMIC SYSTEMS AND CONTROL CONFERENCE AND BATH/ASME SYMPOSIUM ON FLUID POWER AND MOTION CONTROL (DSCC 2011), VOL 2, 2012, : 619 - 626