OSCILLATORY STOCHASTIC INTEGRALS AND A POSITIVE FEYNMAN-KAC FORMULA

被引:0
|
作者
MALLIAVIN, P
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:141 / 143
页数:3
相关论文
共 50 条
  • [21] A Feynman-Kac formula for geometric quantization
    Guo, MZ
    Qian, M
    Wang, ZD
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1996, 39 (03): : 238 - 245
  • [22] First order Feynman-Kac formula
    Li, Xue-Mei
    Thompson, James
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2018, 128 (09) : 3006 - 3029
  • [23] Quantum white noise Feynman-Kac formula
    Ettaieb, Aymen
    Khalifa, Narjess Turki
    Ouerdiane, Habib
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2018, 26 (02) : 75 - 87
  • [24] A variational quantum algorithm for the Feynman-Kac formula
    Alghassi, Hedayat
    Deshmukh, Amol
    Ibrahim, Noelle
    Robles, Nicolas
    Woerner, Stefan
    Zoufal, Christa
    QUANTUM, 2022, 6
  • [26] THE FEYNMAN-KAC FORMULA FOR A SYSTEM OF PARABOLIC EQUATIONS
    KAHANE, CS
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1994, 44 (04) : 579 - 602
  • [27] FUNCTIONAL INTEGRAL AND THE FEYNMAN-KAC FORMULA IN SUPERSPACE
    KTITAREV, DV
    LETTERS IN MATHEMATICAL PHYSICS, 1989, 18 (04) : 325 - 331
  • [28] A Feynman-Kac formula for anticommuting Brownian motion
    Leppard, S
    Rogers, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (03): : 555 - 568
  • [29] The Feynman-Kac formula and decomposition of Brownian paths
    Jeanblanc, M
    Pitman, J
    Yor, M
    COMPUTATIONAL & APPLIED MATHEMATICS, 1997, 16 (01): : 27 - 52
  • [30] THE FEYNMAN-KAC FORMULA FOR SYMMETRIC MARKOV PROCESSES
    YING JINAGANG *
    ChineseAnnalsofMathematics, 1997, (03) : 30 - 37