First order Feynman-Kac formula

被引:2
|
作者
Li, Xue-Mei [1 ]
Thompson, James
机构
[1] Imperial Coll London, Dept Math, London, England
关键词
Manifold with a pole; Semi-classical bridge; Feynman-Kac formula; Gaussian bounds for fundamental solutions of parabolic equations; Logarithmic heat kernels; HEAT KERNEL; SCHRODINGER-OPERATORS; HARNACK INEQUALITY; SELF-ADJOINTNESS; TIME BEHAVIOR; UPPER-BOUNDS; EQUATION; DERIVATIVES; SEMIGROUPS; UNIQUENESS;
D O I
10.1016/j.spa.2017.10.010
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the parabolic integral kernel for the weighted Laplacian with a potential. For manifolds with a pole we deduce formulas and estimates for the derivatives of the Feynman-Kac kernels and their logarithms, these are in terms of a 'Gaussian' term and the semi-classical bridge. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:3006 / 3029
页数:24
相关论文
共 50 条