THE APPLICATION OF LEJA POINTS TO RICHARDSON ITERATION AND POLYNOMIAL PRECONDITIONING

被引:30
|
作者
REICHEL, L
机构
[1] Department of Mathematics University of Kentucky, Lexington
基金
美国国家科学基金会;
关键词
D O I
10.1016/0024-3795(91)90386-B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Ax = b be a linear system of algebraic equations with a large nonhermitian matrix A, and let sigma-(A) denote the spectrum of A. Assume that there is an explicitly known compact set K in the complex plane, such that sigma-(A) subset-of K and 0 is-not-an-element-of K. We introduce sequences of Leja points {z(j)}j = 0 infinity for K and discuss convergence and stability properties of the Richardson iteration method with relaxation parameters delta-j: = 1/z(j). By replacing K with a finite set K(m) and using reciprocal values of the Leja points for K(m) as relaxation parameters, we obtain a practical scheme for determining relaxation parameters for Richardson iteration. With a suitable choice of K(m) this scheme can be used to order any given sequence of relaxation parameters so as to avoid large amplification of roundoff errors. We also show how Leja points can be used to determine polynomial preconditioners.
引用
收藏
页码:389 / 414
页数:26
相关论文
共 50 条
  • [21] COMPUTING MULTIVARIATE FEKETE AND LEJA POINTS BY NUMERICAL LINEAR ALGEBRA
    Bos, L.
    De Marchi, S.
    Sommariva, A.
    Vianello, M.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (05) : 1984 - 1999
  • [22] Richardson iteration for linear equations and application in two-point boundary value problem
    Yong, Longquan
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2018, 21 (01) : 231 - 242
  • [23] Calculation of highly excited vibrational states using a Richardson-Leja-Davidson scheme
    Karlsson, Hans O.
    JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (08):
  • [24] RESIDUAL, RESTARTING, AND RICHARDSON ITERATION FOR THE MATRIX EXPONENTIAL
    Botchev, Mike A.
    Grimm, Volker
    Hochbruck, Marlis
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (03): : A1376 - A1397
  • [25] Preconditioned Richardson iteration for augmented linear systems
    X. Y. Xiao
    X. Wang
    H. W. Yin
    Numerical Algorithms, 2019, 82 : 843 - 867
  • [26] Preconditioning Landweber iteration in Hilbert scales
    Egger, H
    Neubauer, A
    NUMERISCHE MATHEMATIK, 2005, 101 (04) : 643 - 662
  • [27] Constrained Leja points and the numerical solution of the constrained energy problem
    Coroian, DI
    Dragnev, P
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 131 (1-2) : 427 - 444
  • [28] A uniform bound for the Lagrange polynomials of Leja points for the unit disk
    Irigoyen, Amadeo
    ANNALES POLONICI MATHEMATICI, 2017, 119 (01) : 23 - 47
  • [29] MATRIX ITERATION WITH POLYNOMIAL ELEMENTS
    SEIDMAN, TI
    AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (05): : 565 - &
  • [30] Preconditioned Richardson iteration for augmented linear systems
    Xiao, X. Y.
    Wang, X.
    Yin, H. W.
    NUMERICAL ALGORITHMS, 2019, 82 (03) : 843 - 867