Preconditioned Richardson iteration for augmented linear systems

被引:0
|
作者
X. Y. Xiao
X. Wang
H. W. Yin
机构
[1] Nanchang University,Department of Mathematics, School of Sciences
[2] Nanchang University,Numerical Simulation and High
来源
Numerical Algorithms | 2019年 / 82卷
关键词
Augmented linear system; Positive definite; SOR-like iteration; Spectral radius; Convergence analysis; 65F10; 65F50;
D O I
暂无
中图分类号
学科分类号
摘要
For solving a class of augmented linear systems, we propose a new efficient iteration method, which is called preconditioned Richardson iteration (PR). Under suitable restrictions on the iteration parameters, we prove that the iterative sequences converge to the unique solution of the augmented linear system. Moreover, the optimal iteration parameters and the corresponding optimal convergence factor are discussed in detail. Numerical results show that the PR iteration method has an advantage over several other iteration methods by computing with the preconditioned GMRES methods from the point of view of iteration steps and CPU times.
引用
收藏
页码:843 / 867
页数:24
相关论文
共 50 条
  • [1] Preconditioned Richardson iteration for augmented linear systems
    Xiao, X. Y.
    Wang, X.
    Yin, H. W.
    NUMERICAL ALGORITHMS, 2019, 82 (03) : 843 - 867
  • [2] On preconditioned iteration methods for complex linear systems
    Zhong-Zhi Bai
    Journal of Engineering Mathematics, 2015, 93 : 41 - 60
  • [3] On preconditioned iteration methods for complex linear systems
    Bai, Zhong-Zhi
    JOURNAL OF ENGINEERING MATHEMATICS, 2015, 93 (01) : 41 - 60
  • [4] An adaptive Richardson iteration method for indefinite linear systems
    Calvetti, D
    Reichel, L
    NUMERICAL ALGORITHMS, 1996, 12 (1-2) : 125 - 149
  • [5] Backward Gauss-Seidel iteration for preconditioned linear systems
    Wang, Zhuan-De
    Huang, Ting-Zhu
    Yang, Wei
    Advances in Matrix Theory and Applications, 2006, : 426 - 428
  • [6] On preconditioned MHSS iteration methods for complex symmetric linear systems
    Zhong-Zhi Bai
    Michele Benzi
    Fang Chen
    Numerical Algorithms, 2011, 56 : 297 - 317
  • [7] On preconditioned MHSS iteration methods for complex symmetric linear systems
    Bai, Zhong-Zhi
    Benzi, Michele
    Chen, Fang
    NUMERICAL ALGORITHMS, 2011, 56 (02) : 297 - 317
  • [8] A STABLE RICHARDSON ITERATION METHOD FOR COMPLEX LINEAR-SYSTEMS
    FISCHER, B
    REICHEL, L
    NUMERISCHE MATHEMATIK, 1988, 54 (02) : 225 - 242
  • [9] Multi-step preconditioned iteration method for nonsymmetric linear systems
    Kohno, T
    Niki, H
    Usui, M
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1995, 56 (3-4) : 177 - 184
  • [10] EXTREMAL POLYNOMIALS WITH APPLICATION TO RICHARDSON ITERATION FOR INDEFINITE LINEAR-SYSTEMS
    DEBOOR, C
    RICE, JR
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1982, 3 (01): : 47 - 57