Rings with (x, y, z) - (z, y, x) in the right nucleus

被引:0
|
作者
Jayalakshmi, K. [1 ]
Nageswari, G. [1 ]
机构
[1] JNT Univ Anantapur, Coll Engn, Dept Math, Anantapur, Andhra Pradesh, India
关键词
Semiprime; lie ideals; prime ring; associator ideal;
D O I
10.1142/S1793557115500230
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a semiprime nonassociative ring satisfying (x, y, z) - (z, y, x) is an element of N-r then N-l = N-r where N-l and N-r are Lie ideals of R, the set {x is an element of N-r : (R, R, R)x= 0} = {x is an element of N-l : x(R, R, R) = 0} is an ideal of R, and it is contained in the nucleus. Further if [R, R]N-r subset of N-r and R is a prime ring with N-r not equal 0 then R is either associative or commutative.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] X-Y-Z MODELS
    SNADDEN, RB
    [J]. JOURNAL OF CHEMICAL EDUCATION, 1976, 53 (06) : 368 - 369
  • [42] STUDY OF W, X, Y, Z
    Cattrone, Lisa
    [J]. CHICAGO REVIEW, 2014, 58 (02) : 117 - 117
  • [43] X Y Z particles at BABAR
    E.Prencipe
    [J]. Chinese Physics C, 2010, (06) : 644 - 649
  • [44] Visual acuity in x, y, and z
    Huckauf, A.
    Muesseler, J.
    Faehrmann, F.
    [J]. PERCEPTION, 2009, 38 : 69 - 70
  • [45] X Y Z particles at BABAR
    Prencipe, E.
    [J]. CHINESE PHYSICS C, 2010, 34 (06) : 644 - 649
  • [46] Healthcare interpreters X, Y, Z
    Monzo-Nebot, Esther
    Alvarez-Alvarez, Cristina R.
    [J]. TRANSLATION SPACES, 2024, 13 (01) : 126 - 148
  • [47] On the characterizations of fuzzy implications satisfying I (x, I (y, z)) = I (I (x, y), I (x, z))
    Cruz, A.
    Bedregal, B. C.
    Santiago, R. H. N.
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2018, 93 : 261 - 276
  • [48] 关于Diophantine方程ax(x+1)…(x+z)=y(y+1)…(y+z)
    乐茂华
    [J]. 咸阳师范学院学报, 2008, (06) : 1 - 2
  • [49] 关于Diophantine方程ax(x+1)…(x+z)=y(y+1)…(y+z)
    谷秀川
    [J]. 岭南师范学院学报, 2010, 31 (03) : 16 - 18
  • [50] ON AN ESTIMATE FOR THE CURVATURE OF MINIMAL SURFACES Z=Z(X,Y)
    NITSCHE, JCC
    [J]. JOURNAL OF MATHEMATICS AND MECHANICS, 1958, 7 (05): : 767 - 769