Dynamics of a Parametrically Excited System with Two Forcing Terms

被引:18
|
作者
Sofroniou, Anastasia [1 ]
Bishop, Steven [2 ]
机构
[1] Univ West London, Sch Comp & Technol, St Marys Rd, London W5 5RF, England
[2] UCL, Dept Math, London WC1E 6BT, England
来源
MATHEMATICS | 2014年 / 2卷 / 03期
基金
英国工程与自然科学研究理事会;
关键词
parametric excitation; double forcing; quasiperiodicity; route to chaos;
D O I
10.3390/math2030172
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by the dynamics of a trimaran, an investigation of the dynamic behaviour of a double forcing parametrically excited system is carried out. Initially, we provide an outline of the stability regions, both numerically and analytically, for the undamped linear, extended version of the Mathieu equation. This paper then examines the anticipated form of response of our proposed nonlinear damped double forcing system, where periodic and quasiperiodic routes to chaos are graphically demonstrated and compared with the case of the single vertically-driven pendulum.
引用
收藏
页码:172 / 195
页数:24
相关论文
共 50 条
  • [41] ANALYSIS OF GLOBAL DYNAMICS IN A PARAMETRICALLY EXCITED THIN PLATE
    张伟
    [J]. Acta Mechanica Sinica, 2001, 17 (01) : 71 - 85
  • [42] Nonlinear Nonplanar Dynamics of Parametrically Excited Cantilever Beams
    Haider N. Arafat
    Ali H. Nayfeh
    Char-Ming Chin
    [J]. Nonlinear Dynamics, 1998, 15 : 31 - 61
  • [43] Chaos in the Periodically Parametrically Excited Lorenz System
    Huang, Weisheng
    Yang, Xiao-Song
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (08):
  • [44] GLOBAL TRANSIENT DYNAMICS OF NONLINEAR PARAMETRICALLY EXCITED SYSTEMS
    SOLIMAN, MS
    [J]. NONLINEAR DYNAMICS, 1994, 6 (03) : 317 - 329
  • [45] Bifurcation Control of a Parametrically Excited Duffing System
    J. C. Ji
    A. Y. T. Leung
    [J]. Nonlinear Dynamics, 2002, 27 : 411 - 417
  • [46] Parametrically Excited Microelectromechanical System in Navigation Problems
    Bogolyubov, Vladimir
    Bakhtieva, Lyalya
    [J]. PROCEEDINGS OF 2018 IEEE EAST-WEST DESIGN & TEST SYMPOSIUM (EWDTS 2018), 2018,
  • [47] Vibration and control of a parametrically excited mechanical system
    Chen, L.
    [J]. TENCON 2006 - 2006 IEEE REGION 10 CONFERENCE, VOLS 1-4, 2006, : 1521 - 1524
  • [48] Bifurcation control of a parametrically excited duffing system
    Ji, JC
    Leung, AYT
    [J]. NONLINEAR DYNAMICS, 2002, 27 (04) : 411 - 417
  • [49] Frequency Response Characteristics of Parametrically Excited System
    Han, Qinkai
    Wang, Jianjun
    Li, Qihan
    [J]. JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2010, 132 (04): : 0410041 - 04100411
  • [50] ON THE MAXIMAL LYAPUNOV EXPONENT FOR A REAL NOISE PARAMETRICALLY EXCITED CODIMENSION TWO BIFURCATION SYSTEM (Ⅰ)
    刘先斌
    陈大鹏
    陈虬
    [J]. Applied Mathematics and Mechanics(English Edition), 1999, (09) : 967 - 978