Vibration and control of a parametrically excited mechanical system

被引:0
|
作者
Chen, L. [1 ]
机构
[1] Univ Adelaide, Sch Mech Engn, Adelaide, SA 5005, Australia
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a control method that combines linear and nonlinear velocity feedback control is proposed to suppress the principal parametric resonance in a flexible cantilever beam structure. Linear-velocity feedback is employed for bifurcation control and cubic-velocity feedback is employed to suppress the high-amplitude vibration. Numerical simulation and experimental results show that combined bifurcation control and nonlinear feedback control can avoid actuator saturation and provide better performance than linear-velocity or cubic-velocity feedback control alone.
引用
收藏
页码:1521 / 1524
页数:4
相关论文
共 50 条
  • [1] Vibration control for parametrically excited Lienard systems
    Maccari, A
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2006, 41 (01) : 146 - 155
  • [2] Vibration Control for Parametrically Excited Coupled Nonlinear Oscillators
    Maccari, Attilio
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2008, 3 (03):
  • [3] Essentially nonlinear vibration absorber in a parametrically excited system
    Shiroky, I. B.
    Gendelman, O. V.
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2008, 88 (07): : 573 - 596
  • [4] Study on Nonlinear Parametrically Excited Vibration in Automatic Gauge Control System of the Rolling Mill
    Zhang, Ruicheng
    An, Weiran
    Yang, Pingping
    [J]. NETWORK COMPUTING AND INFORMATION SECURITY, 2012, 345 : 453 - +
  • [5] Bifurcation Control of a Parametrically Excited Duffing System
    J. C. Ji
    A. Y. T. Leung
    [J]. Nonlinear Dynamics, 2002, 27 : 411 - 417
  • [6] Bifurcation control of a parametrically excited duffing system
    Ji, JC
    Leung, AYT
    [J]. NONLINEAR DYNAMICS, 2002, 27 (04) : 411 - 417
  • [7] CHAOTIC BEHAVIOR OF A PARAMETRICALLY EXCITED NONLINEAR MECHANICAL SYSTEM
    MALASOMA, JM
    LAMARQUE, CH
    JEZEQUEL, L
    [J]. NONLINEAR DYNAMICS, 1994, 5 (02) : 153 - 160
  • [8] The response of a dynamic vibration absorber system with a parametrically excited pendulum
    Song, Y
    Sato, H
    Iwata, Y
    Komatsuzaki, T
    [J]. JOURNAL OF SOUND AND VIBRATION, 2003, 259 (04) : 747 - 759
  • [9] A parametrically excited vibration energy harvester
    Jia, Yu
    Yan, Jize
    Soga, Kenichi
    Seshia, Ashwin A.
    [J]. JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2014, 25 (03) : 278 - 289
  • [10] CONTROL OF IRREGULAR VIBRATION RANGES IN NONLINEAR PARAMETRICALLY EXCITED GEAR SYSTEMS
    HORTEL, M
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1993, 73 (4-5): : T78 - T80