AN EXTENSION OF THE BIPARTITE WEIGHTED MATCHING PROBLEM

被引:7
|
作者
HSIEH, AJ
HO, CW
FAN, KC
机构
[1] NATL CENT UNIV,INST COMP SCI & INFORMAT ENGN,CHUNGLI 32054,TAIWAN
[2] IND TECHNOL RES INST,COMP & COMMUN RES LABS,HSINCHU 31015,TAIWAN
关键词
ASSIGNMENT PROBLEM; BIPARTITE WEIGHTED MATCHING; HUNGARIAN METHOD;
D O I
10.1016/0167-8655(94)00106-D
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An extension of the bipartite weighted matching problem is considered in this paper. Given the weight of each edge and the penalty of each vertex, the matching goal is to find a matching such that the sum of the weights of matching edges plus the penalties of unmatched vertices is minimum. In this paper, a reduction algorithm is proposed, which is found to be capable of reducing the matching problem to the assignment problem.
引用
收藏
页码:347 / 353
页数:7
相关论文
共 50 条
  • [1] A randomized algorithm for the on-line weighted bipartite matching problem
    Csaba, Bela
    Pluhar, Andras
    [J]. JOURNAL OF SCHEDULING, 2008, 11 (06) : 449 - 455
  • [2] A randomized algorithm for the on-line weighted bipartite matching problem
    Béla Csaba
    András Pluhár
    [J]. Journal of Scheduling, 2008, 11 : 449 - 455
  • [3] Secure Minimum Weighted Bipartite Matching
    Anandan, Balamurugan
    Clifton, Chris
    [J]. 2017 IEEE CONFERENCE ON DEPENDABLE AND SECURE COMPUTING, 2017, : 60 - 67
  • [4] GROUP WEIGHTED MATCHING IN BIPARTITE GRAPHS
    AHARONI, R
    MESHULAM, R
    WAJNRYB, B
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 1995, 4 (02) : 165 - 171
  • [5] Fast algorithms for weighted bipartite matching
    Schwartz, J
    Steger, A
    Weiss, A
    [J]. EXPERIMENTAL AND EFFICIENT ALGORITHMS, PROCEEDINGS, 2005, 3503 : 476 - 487
  • [6] Edge-Weighted Online Bipartite Matching
    Fahrbach, Matthew
    Huang, Zhiyi
    Tao, Runzhou
    Zadimoghaddam, Morteza
    [J]. JOURNAL OF THE ACM, 2022, 69 (06)
  • [7] Diverse Weighted Bipartite b-Matching
    Ahmed, Faez
    Dickerson, John P.
    Fuge, Mark
    [J]. PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 35 - 41
  • [8] Edge-Weighted Online Bipartite Matching
    Fahrbach, Matthew
    Huang, Zhiyi
    Tao, Runzhou
    Zadimoghaddam, Morteza
    [J]. 2020 IEEE 61ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2020), 2020, : 412 - 423
  • [9] Distance Matching Extension in Cubic Bipartite Graphs
    R. E. L. Aldred
    Jun Fujisawa
    Akira Saito
    [J]. Graphs and Combinatorics, 2021, 37 : 1793 - 1806
  • [10] Distance Matching Extension in Cubic Bipartite Graphs
    Aldred, R. E. L.
    Fujisawa, Jun
    Saito, Akira
    [J]. GRAPHS AND COMBINATORICS, 2021, 37 (05) : 1793 - 1806