Distance Matching Extension in Cubic Bipartite Graphs

被引:2
|
作者
Aldred, R. E. L. [1 ]
Fujisawa, Jun [2 ]
Saito, Akira [3 ]
机构
[1] Univ Otago, Dept Math & Stat, POB 56, Dunedin 9054, New Zealand
[2] Keio Univ, Fac Business & Commerce, Kohoku Ku, Hiyoshi 4-1-1, Yokohama, Kanagawa 2238521, Japan
[3] Nihon Univ, Dept Comp Sci, Setagaya Ku, Sakurajosui 3-25-40, Tokyo 1568550, Japan
基金
日本学术振兴会;
关键词
Distance restricted matching extension; Cubic bipartite graphs; Planar graphs; Projective planar graphs;
D O I
10.1007/s00373-021-02295-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph G is said to be distance d matchable if, for any matching M of G in which edges are pairwise at least distance d apart, there exists a perfect matching M* of G which contains M. In this paper, we prove the following results: (i) if G is a cubic bipartite graph in which, for each e is an element of E(G), there exist two cycles C-1, C-2 of length at most d such that E(C-1) boolean AND E(C-2) = {e}, then G is distance d - 1 matchable, and (ii) if G is a planar or projective planar cubic bipartite graph in which, for each e is an element of E(G), there exist two cycles C-1, C-2 of length at most 6 such that e is an element of E(C-1) boolean AND E(C-2), then G is distance 6 matchable.
引用
收藏
页码:1793 / 1806
页数:14
相关论文
共 50 条
  • [1] Distance Matching Extension in Cubic Bipartite Graphs
    R. E. L. Aldred
    Jun Fujisawa
    Akira Saito
    Graphs and Combinatorics, 2021, 37 : 1793 - 1806
  • [2] Matching transformation graphs of cubic bipartite plane graphs
    Bau, S
    Henning, MA
    DISCRETE MATHEMATICS, 2003, 262 (1-3) : 27 - 36
  • [3] The connectivity of matching transformation graphs of cubic bipartite plane graphs
    Bau, S
    ARS COMBINATORIA, 2001, 60 : 161 - 169
  • [4] Perfect matching and distance spectral radius in graphs and bipartite graphs
    Zhang, Yuke
    Lin, Huiqiu
    DISCRETE APPLIED MATHEMATICS, 2021, 304 : 315 - 322
  • [5] Bipartite graph matching for computing the edit distance of graphs
    Riesen, Kaspar
    Neuhaus, Michel
    Bunke, Horst
    GRAPH-BASED REPRESENTATIONS IN PATTERN RECOGNITION, PROCEEDINGS, 2007, 4538 : 1 - +
  • [6] Distance matching extension and local structure of graphs
    Aldred, R. E. L.
    Fujisawa, Jun
    Saito, Akira
    JOURNAL OF GRAPH THEORY, 2020, 93 (01) : 5 - 20
  • [7] Amalgams of Cubic Bipartite Graphs
    Domenico Labbate
    Designs, Codes and Cryptography, 2004, 32 : 267 - 275
  • [8] Bipartite density of cubic graphs
    Berman, A
    Zhang, XD
    DISCRETE MATHEMATICS, 2003, 260 (1-3) : 27 - 35
  • [9] Amalgams of cubic bipartite graphs
    Labbate, D
    DESIGNS CODES AND CRYPTOGRAPHY, 2004, 32 (1-3) : 267 - 275
  • [10] Spectral matching of bipartite graphs
    Srinivasan, SH
    DESIGN AND APPLICATION OF HYBRID INTELLIGENT SYSTEMS, 2003, 104 : 861 - 867