Distance Matching Extension in Cubic Bipartite Graphs

被引:2
|
作者
Aldred, R. E. L. [1 ]
Fujisawa, Jun [2 ]
Saito, Akira [3 ]
机构
[1] Univ Otago, Dept Math & Stat, POB 56, Dunedin 9054, New Zealand
[2] Keio Univ, Fac Business & Commerce, Kohoku Ku, Hiyoshi 4-1-1, Yokohama, Kanagawa 2238521, Japan
[3] Nihon Univ, Dept Comp Sci, Setagaya Ku, Sakurajosui 3-25-40, Tokyo 1568550, Japan
基金
日本学术振兴会;
关键词
Distance restricted matching extension; Cubic bipartite graphs; Planar graphs; Projective planar graphs;
D O I
10.1007/s00373-021-02295-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph G is said to be distance d matchable if, for any matching M of G in which edges are pairwise at least distance d apart, there exists a perfect matching M* of G which contains M. In this paper, we prove the following results: (i) if G is a cubic bipartite graph in which, for each e is an element of E(G), there exist two cycles C-1, C-2 of length at most d such that E(C-1) boolean AND E(C-2) = {e}, then G is distance d - 1 matchable, and (ii) if G is a planar or projective planar cubic bipartite graph in which, for each e is an element of E(G), there exist two cycles C-1, C-2 of length at most 6 such that e is an element of E(C-1) boolean AND E(C-2), then G is distance 6 matchable.
引用
收藏
页码:1793 / 1806
页数:14
相关论文
共 50 条
  • [21] Online Matching in Regular Bipartite Graphs
    Barriere, Lali
    Munoz, Xavier
    Fuchs, Janosch
    Unger, Walter
    PARALLEL PROCESSING LETTERS, 2018, 28 (02)
  • [22] SOME MATCHING PROBLEMS FOR BIPARTITE GRAPHS
    ITAI, A
    RODEH, M
    TANIMOTO, SL
    JOURNAL OF THE ACM, 1978, 25 (04) : 517 - 525
  • [23] SOME RESULTS ON MATCHING IN BIPARTITE GRAPHS
    GRAHAM, RL
    HARPER, LH
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1969, 17 (06) : 1017 - &
  • [24] A MATCHING ALGORITHM FOR REGULAR BIPARTITE GRAPHS
    CSIMA, J
    LOVASZ, L
    DISCRETE APPLIED MATHEMATICS, 1992, 35 (03) : 197 - 203
  • [25] On the forced matching numbers of bipartite graphs
    Adams, P
    Mahdian, M
    Mahmoodian, ES
    DISCRETE MATHEMATICS, 2004, 281 (1-3) : 1 - 12
  • [26] Bipartite graphs with every matching in a cycle
    Amar, Denise
    Flandrin, Evelyne
    Gancarzewicz, Grzegorz
    Wojda, A. Pawel
    DISCRETE MATHEMATICS, 2007, 307 (11-12) : 1525 - 1537
  • [27] Stable Matching Beyond Bipartite Graphs
    Wu, Jie
    2016 IEEE 30TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW), 2016, : 480 - 488
  • [28] GROUP WEIGHTED MATCHING IN BIPARTITE GRAPHS
    AHARONI, R
    MESHULAM, R
    WAJNRYB, B
    JOURNAL OF ALGEBRAIC COMBINATORICS, 1995, 4 (02) : 165 - 171
  • [29] Fully Dynamic Matching in Bipartite Graphs
    Bernstein, Aaron
    Stein, Cliff
    AUTOMATA, LANGUAGES, AND PROGRAMMING, PT I, 2015, 9134 : 167 - 179
  • [30] The labeled perfect matching in bipartite graphs
    Monnot, J
    INFORMATION PROCESSING LETTERS, 2005, 96 (03) : 81 - 88