A randomized algorithm for the on-line weighted bipartite matching problem

被引:0
|
作者
Béla Csaba
András Pluhár
机构
[1] Analysis and Stochastics Research Group of the Hungarian Academy of Sciences,Department of Computer Science
[2] University of Szeged,undefined
来源
Journal of Scheduling | 2008年 / 11卷
关键词
On-line; Bipartite matching; Randomized; Metric spaces; 68R10; 68W25; 68W40;
D O I
暂无
中图分类号
学科分类号
摘要
We study the on-line minimum weighted bipartite matching problem in arbitrary metric spaces. Here, n not necessary disjoint points of a metric space M are given, and are to be matched on-line with n points of M revealed one by one. The cost of a matching is the sum of the distances of the matched points, and the goal is to find or approximate its minimum. The competitive ratio of the deterministic problem is known to be Θ(n), see (Kalyanasundaram, B., Pruhs, K. in J. Algorithms 14(3):478–488, 1993) and (Khuller, S., et al. in Theor. Comput. Sci. 127(2):255–267, 1994). It was conjectured in (Kalyanasundaram, B., Pruhs, K. in Lecture Notes in Computer Science, vol. 1442, pp. 268–280, 1998) that a randomized algorithm may perform better against an oblivious adversary, namely with an expected competitive ratio Θ(log n). We prove a slightly weaker result by showing a o(log 3n) upper bound on the expected competitive ratio. As an application the same upper bound holds for the notoriously hard fire station problem, where M is the real line, see (Fuchs, B., et al. in Electonic Notes in Discrete Mathematics, vol. 13, 2003) and (Koutsoupias, E., Nanavati, A. in Lecture Notes in Computer Science, vol. 2909, pp. 179–191, 2004).
引用
收藏
页码:449 / 455
页数:6
相关论文
共 50 条
  • [1] A randomized algorithm for the on-line weighted bipartite matching problem
    Csaba, Bela
    Pluhar, Andras
    [J]. JOURNAL OF SCHEDULING, 2008, 11 (06) : 449 - 455
  • [2] An Improved Randomized On-Line Algorithm for a Weighted Interval Selection Problem
    Hiroyuki Miyazawa
    Thomas Erlebach
    [J]. Journal of Scheduling, 2004, 7 : 293 - 311
  • [3] An improved randomized on-line algorithm for a weighted interval selection problem
    Miyazawa, H
    Erlebach, T
    [J]. JOURNAL OF SCHEDULING, 2004, 7 (04) : 293 - 311
  • [4] Deferred on-line bipartite matching
    Kozik, Jakub
    Matecki, Grzegorz
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (02):
  • [5] AN EXTENSION OF THE BIPARTITE WEIGHTED MATCHING PROBLEM
    HSIEH, AJ
    HO, CW
    FAN, KC
    [J]. PATTERN RECOGNITION LETTERS, 1995, 16 (04) : 347 - 353
  • [6] On-line weighted pattern matching
    Charalampopoulos, Panagiotis
    Iliopoulos, Costas S.
    Pissis, Solon R.
    Radoszewski, Jakub
    [J]. INFORMATION AND COMPUTATION, 2019, 266 : 49 - 59
  • [7] AN EFFICIENT ALGORITHM FOR THE BIPARTITE MATCHING PROBLEM
    CARRARESI, P
    SODINI, C
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1986, 23 (01) : 86 - 93
  • [8] A randomized on-line algorithm for the k-server problem on a line
    Csaba, Bala
    Lodha, Sachin
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2006, 29 (01) : 82 - 104
  • [9] Randomized algorithms for the on-line minimum matching problem on Euclidean space
    Tsai, YT
    Tang, CY
    Chen, YY
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1995, 58 (1-2) : 19 - 32
  • [10] A new algorithm for on-line coloring bipartite graphs
    Broersma, Hajo J.
    Capponi, Agostino
    Paulusma, Daniel
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 22 (01) : 72 - 91