A new algorithm for on-line coloring bipartite graphs

被引:13
|
作者
Broersma, Hajo J. [1 ]
Capponi, Agostino [2 ]
Paulusma, Daniel [1 ]
机构
[1] Univ Durham, Dept Comp Sci, Durham DH1 3LE, England
[2] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA
关键词
on-line coloring; bipartite graph; (on-line) competitive;
D O I
10.1137/060668675
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We first show that for any bipartite graph H with at most five vertices there exists an on-line competitive algorithm for the class of H-free bipartite graphs. We then analyze the performance of an on-line algorithm for coloring bipartite graphs on various subfamilies. The algorithm yields new upper bounds for the on-line chromatic number of bipartite graphs. We prove that the algorithm is on-line competitive for P(7)-free bipartite graphs, i.e., that do not contain an induced path on seven vertices. The number of colors used by the on-line algorithm for P(6)-free and P(7)-free bipartite graphs is, respectively, bounded by roughly twice and roughly eight times the on-line chromatic number. In contrast, it is known that there exists no competitive on-line algorithm to color P(6)-free (or P(7)-free) bipartite graphs, i.e., for which the number of colors is bounded by any function depending only on the chromatic number.
引用
收藏
页码:72 / 91
页数:20
相关论文
共 50 条
  • [1] An On-line Competitive Algorithm for Coloring P8-free Bipartite Graphs
    Micek, Piotr
    Wiechert, Veit
    [J]. ALGORITHMS AND COMPUTATION, ISAAC 2014, 2014, 8889 : 516 - 527
  • [2] An On-line Competitive Algorithm for Coloring Bipartite Graphs Without Long Induced Paths
    Piotr Micek
    Veit Wiechert
    [J]. Algorithmica, 2017, 77 : 1060 - 1070
  • [3] An On-line Competitive Algorithm for Coloring Bipartite Graphs Without Long Induced Paths
    Micek, Piotr
    Wiechert, Veit
    [J]. ALGORITHMICA, 2017, 77 (04) : 1060 - 1070
  • [4] On-line coloring of H-free bipartite graphs
    Broersma, H. J.
    Capponi, A.
    Paulusma, D.
    [J]. ALGORITHMS AND COMPLEXITY, PROCEEDINGS, 2006, 3998 : 284 - 295
  • [5] Coloring graphs on-line
    Kierstead, HA
    [J]. ONLINE ALGORITHMS, 1998, 1442 : 281 - 305
  • [6] On-line edge-coloring algorithms for degree-bounded bipartite graphs
    Taki, M
    Sugiura, M
    Kashiwabara, T
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2002, E85A (05): : 1062 - 1065
  • [7] On-line coloring κ-colorable graphs
    Kierstead, HA
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1998, 105 (1) : 93 - 104
  • [8] On-line coloring of perfect graphs
    Kierstead, HA
    Kolossa, K
    [J]. COMBINATORICA, 1996, 16 (04) : 479 - 491
  • [9] On-line DP-coloring of graphs
    Kim, Seog-Jin
    Kostochka, Alexandr
    Li, Xuer
    Zhu, Xuding
    [J]. DISCRETE APPLIED MATHEMATICS, 2020, 285 : 443 - 453
  • [10] On-line coloring of geometric intersection graphs
    Erlebach, T
    Fiala, J
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2002, 23 (02): : 243 - 255