MISSING DATA IMPUTATION USING THE MULTIVARIATE T-DISTRIBUTION

被引:39
|
作者
LIU, C
机构
关键词
BAYESIAN INFERENCE; BARTLETTS DECOMPOSITION; DATA AUGMENTATION; EM; ECM; ECME; MONOTONE DATA AUGMENTATION; POSTERIOR SIMULATION; ROBUST INFERENCES;
D O I
10.1006/jmva.1995.1029
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
When a rectangular multivariate data set contains missing values, missing data imputation using the multivariate t distribution appears potentially useful, especially for robust inferences. An efficient technique, called the monotone data augmentation algorithm, for implementing missing data imputation using the multivariate t distribution with known and unknown weights, with monotone and nonmonotone missing data, and with known and unknown degrees of freedom is presented. Two numerical examples are included to illustrate the methodology, to compare results obtained using the multivariate t distribution with results obtained using the normal distribution, and to compare the rate of convergence of the monotone data augmentation algorithm with the rate of convergence of the (rectangular) data augmentation algorithm. (C) 1995 Academic Press, Inc.
引用
收藏
页码:139 / 158
页数:20
相关论文
共 50 条
  • [21] Doubly reweighted estimators for the parameters of the multivariate t-distribution
    Dogru, Fatma Zehra
    Bulut, Y. Murat
    Arslan, Olcay
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (19) : 4751 - 4771
  • [22] Exploring the Effects of Data Distribution in Missing Data Imputation
    Soares, Jastin Pompeu
    Santos, Miriam Seoane
    Abreu, Pedro Henriques
    Araujo, Helder
    Santos, Joao
    [J]. ADVANCES IN INTELLIGENT DATA ANALYSIS XVII, IDA 2018, 2018, 11191 : 251 - 263
  • [23] CONVERGENCE BEHAVIOR OF THE EM ALGORITHM FOR THE MULTIVARIATE T-DISTRIBUTION
    ARSLAN, O
    CONSTABLE, PDL
    KENT, JT
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1995, 24 (12) : 2981 - 3000
  • [24] Robust Inference in the Capital Asset Pricing Model Using the Multivariate t-distribution
    Galea, Manuel
    Cademartori, David
    Curci, Roberto
    Molina, Alonso
    [J]. JOURNAL OF RISK AND FINANCIAL MANAGEMENT, 2020, 13 (06)
  • [25] Application of Sequential Regression Multivariate Imputation Method on Multivariate Normal Missing Data
    Nurzaman
    Siswantining, Titin
    Soemartojo, Saskya Mary
    Sarwinda, Devvi
    [J]. 2019 3RD INTERNATIONAL CONFERENCE ON INFORMATICS AND COMPUTATIONAL SCIENCES (ICICOS 2019), 2019,
  • [26] Missing Data Imputation for a Multivariate Outcome of Mixed Variable Types
    Wang, Tuo
    Zilinskas, Rachel
    Li, Ying
    Qu, Yongming
    [J]. STATISTICS IN BIOPHARMACEUTICAL RESEARCH, 2023, 15 (04): : 826 - 837
  • [27] On multivariate imputation and forecasting of decadal wind speed missing data
    Wesonga, Ronald
    [J]. SPRINGERPLUS, 2015, 4
  • [28] Missing Data and Multiple Imputation in the Context of Multivariate Analysis of Variance
    Finch, W. Holmes
    [J]. JOURNAL OF EXPERIMENTAL EDUCATION, 2016, 84 (02): : 356 - 372
  • [29] Tests of Multivariate Hypotheses when using Multiple Imputation for Missing Data and Disclosure Limitation
    Kinney, Satkartar K.
    Reiter, Jerome P.
    [J]. JOURNAL OF OFFICIAL STATISTICS, 2010, 26 (02) : 301 - 315
  • [30] Semiparametric Fractional Imputation Using Gaussian Mixture Models for Handling Multivariate Missing Data
    Sang, Hejian
    Kim, Jae Kwang
    Lee, Danhyang
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (538) : 654 - 663