ON ASYMPTOTIC PROPERTIES OF SOLUTIONS FOR A CLASS OF MECHANICAL SYSTEMS WITH INFINITELY MANY FREEDOM DEGREES

被引:0
|
作者
SHATINA, AV
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:85 / 89
页数:5
相关论文
共 50 条
  • [41] Infinitely Many Periodic Solutions for a Class of Second-order Hamiltonian Systems
    Ming-hai YANG
    Yue-fen CHEN
    Yan-fang XUE
    Acta Mathematicae Applicatae Sinica, 2016, 32 (01) : 231 - 238
  • [42] Infinitely many fast homoclinic solutions for a class of superquadratic damped vibration systems
    Mohsen Timoumi
    Journal of Elliptic and Parabolic Equations, 2020, 6 : 451 - 471
  • [43] QUASI-STATIC TREATMENT OF STABILITY FOR SOLUTIONS OF A CLASS OF MECHANICAL SYSTEMS WITH AN INFINITE NUMBER OF DEGREES OF FREEDOM
    SINITSYN, YV
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1993, 57 (04): : 591 - 600
  • [44] Infinitely many solutions for a class of semilinear elliptic equations
    Wu, Yue
    An, Tianqing
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 414 (01) : 285 - 295
  • [45] INFINITELY MANY SOLUTIONS FOR A CLASS OF DEGENERATE ELLIPTIC EQUATIONS
    李珂
    魏红军
    ActaMathematicaScientia, 2011, 31 (05) : 1899 - 1910
  • [46] INFINITELY MANY SOLUTIONS FOR A CLASS OF SUBLINEAR SCHRODINGER EQUATIONS
    Zhang, Wei
    Li, Gui-Dong
    Tang, Chun-Lei
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2018, 8 (05): : 1475 - 1493
  • [47] Joint solutions of many degrees-of-freedom systems using dextrous workspaces
    Agrawal, SK
    Kissner, L
    Yim, M
    2001 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS I-IV, PROCEEDINGS, 2001, : 2480 - 2485
  • [48] INFINITELY MANY SOLUTIONS FOR A CLASS OF DEGENERATE ELLIPTIC EQUATIONS
    Li Ke
    Wei Hongjun
    ACTA MATHEMATICA SCIENTIA, 2011, 31 (05) : 1899 - 1910
  • [49] INFINITELY MANY SOLUTIONS FOR A CLASS OF SUBLINEAR SCHRODINGER EQUATIONS
    Chen, Jing
    Tang, X. H.
    TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (02): : 381 - 396
  • [50] ACTIVE VIBRATION-SUPPRESSION TECHNIQUES FOR MECHANICAL SYSTEMS WITH MANY DEGREES OF FREEDOM
    KATINAS, VY
    MEDZHYAUSHENE, AA
    RAGULSKIS, KM
    RINKEVICHYUS, BB
    STULPINAS, BB
    SOVIET PHYSICS ACOUSTICS-USSR, 1977, 23 (03): : 273 - 274