Infinitely many fast homoclinic solutions for a class of superquadratic damped vibration systems

被引:0
|
作者
Mohsen Timoumi
机构
[1] Faculty of Sciences of Monastir,
关键词
Damped vibration systems; Fast homoclinic solutions; Variational methods; Symmetric mountain pass theorem; 34J45; 35J61; 58E30;
D O I
暂无
中图分类号
学科分类号
摘要
Consider the following damped vibration system u¨(t)+q(t)u˙(t)-L(t)u(t)+∇W(t,u(t))=0,∀t∈R(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \ddot{u}(t)+q(t)\dot{u}(t)-L(t)u(t)+\nabla W(t,u(t))=0,\ \forall t\in \mathbb {R} \qquad \qquad (1) \end{aligned}$$\end{document}where q∈C(R,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in C(\mathbb {R},\mathbb {R})$$\end{document}, L∈C(R,RN2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L\in C(\mathbb {R},\mathbb {R}^{N^{2}})$$\end{document} and W∈C(R×RN,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W\in C(\mathbb {R}\times \mathbb {R}^{N},\ \mathbb {R})$$\end{document}. Applying a Symmetric Mountain Pass Theorem, we prove the existence of infinitely many fast homoclinic solutions for (1) when L is not required to be either uniformly positive definite or coercive and W satisfies some general super-quadratic conditions at infinity in the second variable but does not satisfy the classical superquadratic growth conditions at infinity.
引用
收藏
页码:451 / 471
页数:20
相关论文
共 50 条