Consider the following damped vibration system u¨(t)+q(t)u˙(t)-L(t)u(t)+∇W(t,u(t))=0,∀t∈R(1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} \ddot{u}(t)+q(t)\dot{u}(t)-L(t)u(t)+\nabla W(t,u(t))=0,\ \forall t\in \mathbb {R} \qquad \qquad (1) \end{aligned}$$\end{document}where q∈C(R,R)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$q\in C(\mathbb {R},\mathbb {R})$$\end{document}, L∈C(R,RN2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L\in C(\mathbb {R},\mathbb {R}^{N^{2}})$$\end{document} and W∈C(R×RN,R)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$W\in C(\mathbb {R}\times \mathbb {R}^{N},\ \mathbb {R})$$\end{document}. Applying a Symmetric Mountain Pass Theorem, we prove the existence of infinitely many fast homoclinic solutions for (1) when L is not required to be either uniformly positive definite or coercive and W satisfies some general super-quadratic conditions at infinity in the second variable but does not satisfy the classical superquadratic growth conditions at infinity.